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Abstract—This work presents a machine learning technique to
model the complex-valued scattering parameters (S-parameters)
of passive microwave devices as a function of frequency and
a set of design variables. The proposed Gaussian process (GP)
model intricately models the real and imaginary parts of the
S-parameters by employing a physics-informed kernel, adept at
representing complex holomorphic functions and incorporating
the Hermitian symmetry inherent in scattering parameters.
Additionally, to extend the kernel’s capabilities to higher di-
mensions beyond standard GP techniques, it is extended with a
frequency scaling, enhancing the modeling capacity. The resulting
physics-informed frequency-scaled GP model accurately predicts
the S-parameter values at desired parameter configurations in
the design space. One application example demonstrates the
superiority of the new kernel, compared to standard GP kernels.

Index Terms—Gaussian processes (GP), kernels, machine
learning (ML), Microwave filters, S-parameters

I. INTRODUCTION

PARAMETRIC macromodeling is indispensable for the
characterization of high-frequency electromagnetic (EM)

systems, and plays a crucial role in design space exploration,
optimization, and sensitivity analysis. Several widely used
macromodeling techniques rely on vector fitting (VF) to build
a rational function approximation [1]. A major advantage of
these rational models is their seamless conversion into state-
space form, facilitating integration in SPICE-like solvers for
time-domain simulations [2]. These rational models, however,
do not provide any uncertainty estimation, limiting their ap-
plicability for design optimization purposes.

Recent advancements in macromodeling utilize machine
learning techniques such as artificial neural networks (ANN)
[3], [4] and support vector machines (SVM) [5] to address
the limitations of standard approaches like VF [1] and AAA
[6]. However, ANNs, effective for high-dimensional and non-
linear functions, require substantial amounts of training data
and are prone to overfitting. Conversely, SVMs offer robust
regularization but lack probabilistic interpretability.

Stochastic models, such as Gaussian processes (GP), offer a
promising alternative due to their data efficiency and posterior
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variance estimation, particularly advantageous in computa-
tionally expensive optimization scenarios [7]. Standard GPs,
however, are typically adopted for modeling smooth functions,
while microwave S-parameters often exhibit a dynamic behav-
ior. In fact, this property of the GP derives from the typical
covariance function used among the data points, also known
as kernels.

While S-parameters may exhibit dynamic behavior, changes
in the overall frequency response due to adjustments in
the device’s geometrical dimensions or dielectric properties
are usually smooth or can be represented as a compres-
sion/expansion transformation along the frequency axis. In
this regard, the present work introduces a novel kernel for
modeling parametric S-parameters. It combines the rational
Szegö kernel, originally proposed by Bect et al. [8], with
standard GP kernels to extend its applicability to a multi-
dimensional settings. Moreover, a parametric scaling in the
frequency dimension is incorporated in the kernel, signifi-
cantly enhancing its performance in modeling microwave S-
parameters.

II. METHODOLOGY

A. Gaussian Process Modeling

GPs are probabilistic models that define distributions over
functions, where the joint distribution of any collection of
points on that function follows a multivariate normal distribu-
tion. In particular, the GP is data-driven: it doesn’t depend on a
fixed number of parameters, such as the poles and residues of a
rational VF macromodel. Instead, its complexity and capacity
to express patterns increase with the volume of training data.
This adaptability makes GPs highly data-efficient, facilitating
accurate predictions even when the dataset is limited in size.

GPs are defined by a mean function, representing the
expected value of the function at each point, and a covariance
function, also referred to as the kernel, which captures the
correlation between pairs of points. In many cases, prior
information on the underlying stochastic process or function,
such as the periodicity or smoothness, can be encoded in
either the mean function or kernel. By properly incorporating
these assumptions, GPs can achieve high accuracy, even when
trained on small datasets.
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Once the kernel is defined, new function values are pre-
dicted via Gaussian Process Regression (GPR), also known as
Kriging. In essence, GPR entails two primary steps: specifying
a prior distribution based on assumptions about the underlying
data-generating process, typically achieved through the design
of appropriate mean and kernel functions, followed by updat-
ing this prior using Bayes’ theorem to derive the posterior
distribution. The posterior distribution in GPR captures both
the predictive mean and the uncertainty associated with each
prediction, making it a powerful tool for regression tasks.

B. Rational Szegö Kernel

Few physics-informed kernels have been introduced in the
literature for the modeling of microwave S-parameters [8], [9].
For instance, the delayed GP method introduced by Garbuglia
et al. [9] demonstrates comparable accuracy to delayed vector
fitting for modeling elecrically long interconnects prone to
significant cross-talk. However, it fails to leverage the intricate
relation of the real and imaginary part of the scattering
parameters, and instead, models them as independent variables
using separate GPs. To use the data more effectively, a
Multi-Output Gaussian Process (MOGP) is adopted in this
work. An MOGP is an extension of the standard GP that
can simultaneously model multiple related outputs. This is
particularly useful in scenarios where outputs are correlated
or share common characteristics, allowing for more efficient
and accurate predictions compared to modeling each output
independently.

Bect et al. [8] recently introduced a novel covariance
function, referred to as the rational Szegö kernel, for modeling
complex-valued functions. This kernel has been designed to
represent a space of complex holomorphic functions and
incorporates the Hermitian symmetry inherent in the frequency
response of dynamical systems. It effectively captures the
correlation between the real and imaginary parts, leading to a
fitting procedure that converges significantly faster compared
to standard GP kernels. For a detailed discussion of its
derivation and properties, readers are referred to [8]. The
Szegö kernel is adopted in present work as the covariance
function of the MOGP and can be expressed as follows

Ksz(s0, s1) =

[
ℜ(k+c

2 ) ℑ(−k+c
2 )

ℑ(k+c
2 ) ℜ(k−c

2 )

]
(1)

with

k(s0, s1) =
σ2

2α+ s0 + s∗1

c(s0, s1) =
σ2

2α+ s0 + s1

(2)

where α and σ2 are the hyperparameters of the rational kernel
and s = j2πf is the Laplace variable.

C. Rational Kernel Extension to Higher Dimensions

While the Szegö kernel excels in representing complex-
valued functions across frequency, the dynamics associated
with the parameterization of these functions can be effectively

captured by standard GP kernels. In this work, the Szegö
kernel is extended to higher dimensions by combining it with
a standard Matérn 5/2 kernel [9], for modeling S-parameter
variations with respect to design variables. Leveraging the
distinct strengths of each kernel, the covariance function of
the MOGP can be expressed as

Kcm(s0,x0, s1,x1) = Ksz(s0, s1) ◦Kmat(x0,x1) (3)

where x0 and x1 are vectors containing the design variables.

D. Frequency-scaled Kernels

Microwave S-parameters often exhibit compression or ex-
pansion along the frequency axis. Assuming the frequency
response remains unaffected by other transformations or
changes, this implies that we can express S(s, x̂0) =
S(γs, x̂1). Here, γ represents the scaling of the frequency
response relative to the Laplace variable s as the design
variables are tuned from x̂0 to x̂1. Consequently, the parameter
configurations (s, x0) and (γs, x1) are highly correlated.
However, stationary kernels like the SE kernel, which rely
solely on the distance between points, struggle to capture
such correlations effectively. To address this, the covariance
function (3) is enhanced by incorporating a linear frequency
scaling with respect to the design variables, leading to

Kfs = Kcm(s0(1 + γ · x0),x0, s1(1 + γ · x1),x1) (4)

where γ serves as an additional hyperparameter describing
the linear frequency scaling. It is noteworthy that the use of
a frequency-scaling coefficient to improve modeling accuracy
is inspired by techniques employed in rational modeling [10].

III. APPLICATION EXAMPLE

In this application example, the proposed GPR framework
is evaluated for modeling the transmission of a double-folded
microstrip band-stop filter, formed by a dielectric substrate
between a top metallization and a bottom ground plane. As
illustrated in Fig. 1, the geometry of the upper layer consists
of two stubs, with identical length and spacing, folded onto
the two sides of a transmission line. The S-parameters of the
device are simulated for a set of 15 equispaced frequencies
within the [5, 25] GHz range using ADS Momentum. The
chosen design parameters are the stub length L ∈ [1.5, 3.0]
µm and line-stub spacing S ∈ [0.0, 0.3] µm.

Fig. 1: Double-folded microstrip band-stop filter geometry.

In the following analysis, three kernel functions are com-
pared: two separate GPs for independent modeling of the
real and imaginary part using a Matérn kernel Kmat, an
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Fig. 2: Comparison of real and imaginary part of S12, as predicted with Kfs (blue), and the original S-parameter (red), for
varying L (left) and S (right).

TABLE I: Prediction accuracy of the GP models

Nf ×NL ×NS
RMSE (dB) MAE (dB)

Kmat Kcm Kfs Kmat Kcm Kfs

15× 2× 2 -3.7 -4.5 -23.7 2.8 2.0 -13.5
15× 3× 3 -8.9 -8.7 -36.6 -0.8 -0.5 -25.5
15× 4× 4 -11.0 -12.5 -40.9 -3.6 -3.0 -31.3
15× 5× 5 -12.3 -16.4 -41.4 -4.6 -6.0 -32.5

MOGP using the composite Szegö Matérn kernel Kcm, and
an MOGP using the frequency-scaled enhanced version Kfs.
The implementation of the GP is done in Python using the
GPyTorch library. It is worth noting that the implementation
employs real-valued kernels and inputs, where the outputs
of the MOGP correspond to the real and imaginary parts,
respectively.

The training data is generated by simulating the frequency
response of the double folded stub filter on a uniform N×N
grid within the 2D design space. The hyperparameters of
each model are then selected by minimizing the marginal log-
likelihood. Once the models are fit to the data, their accuracy
is quantified in terms of the root-mean-squared error (RMSE)
and maximum absolute error (MAE), which are evaluated on a
set of 400 (f, L, s) samples chosen randomly according to an
Latin hypercube design. Both metrics are reported in Table I
for each kernel.

The new kernel yields highly accurate predictions despite
the significant variability in the S-parameters. Indeed, this is
demonstrated in Fig. 2, which plots S12 for varying L and
S respectively. The predicted real and imaginary parts (blue)
accurately match the validation samples (red) computed via
EM simulation. In particular, the model effectively captures
the compression and expansion observed in the S-parameters.

IV. CONCLUSION

The rational kernel used in this work enables detailed
modeling of the real and imaginary parts of highly dynamic

S-parameters. Additionally, extending the kernel to higher
dimensions, particularly by incorporating a linear frequency
scaling, has shown superior performance in modeling para-
metric microwave S-parameters compared to standard kernels,
which lack sufficient accuracy.
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