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Abstract: This work presents a computationally efficient transmission matrix model and
optimization scheme for the design of silicon nitride grating couplers in integrated scattering-
based flow cytometry systems. The proposed model accurately simulates the optical power flow
through the grating coupler and microfluidic channel system, enabling precise evaluation of the
transient associated with a polystyrene bead’s passage through the channel. The transmission
matrix model yields a four to five orders-of-magnitude improvement in computational efficiency
compared to a finite difference time domain solver, making it suitable for optimization loops
consisting of many iterations and objective function evaluations. The model’s computational
speed is leveraged to quickly simulate the effect of variations in bead dimensions or position in
the channel. The model is incorporated into a Bayesian optimization scheme that maximizes the
peak to baseline height of the transient by tuning the parameters of both uniform and linearly
apodized grating configurations. Results demonstrate a linearly apodized grating configuration,
optimized for a dynamic system, yields a 2.49 dB improvement in peak to baseline transmission
on the best uniform grating configuration, optimized for a static system.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

1.1. Flow cytometry

Flow cytometry is a critical tool in biomedical research and clinical diagnostics, enabling
multi-parameter analysis of cells and particles for classification or sorting. Traditional flow
cytometers rely on complex optical systems and often require fluorescent labeling, making
them expensive, bulky, and challenging to use in point-of-care or resource-limited settings
[1]. In response to these limitations, microfluidic flow cytometry has emerged as a promising
alternative, leveraging advancements in microfabrication and electronic integration to create
smaller, more cost-effective, and portable devices. These systems can reduce both size and cost,
while leveraging parallel processing across multiple channels to enable high cell throughput, but
often rely on the sensitive manual alignment of optics with the microfluidic channel [2–4].

Integrated optofluidic systems [5–9], circumvent fiber-channel alignment with integrated planar
waveguides that transport light to and from the microfluidic channel, yielding better robustness and
fabrication scaling. Fluorescence-based integrated flow cytometers, such as the system presented
by Hong et al. [10], achieve high classification accuracy but require fluorescent labeling of sample
cells prior to analysis. This labeling process can stress cells and adds additional complexity,
which may limit suitability for high-throughput applications. Scattering-based integrated flow
cytometers offer a promising alternative, as they do not require fluorescent labeling. Recently,
Jooken et al. [11] demonstrated the first monolithically integrated microfluidic flow cytometry
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system with sufficient resolution for the discrimination of lymphocytes and monocytes, white
bloods cells of particular importance in cell therapy, using scattering rather than fluorescence.

However, further optimization is necessary to enhance sensitivity, throughput, and ease of
operation, particularly in cell therapy applications where large-scale, high-precision processing
of cells, such as lymphocytes and monocytes, is essential. One of the primary factors limiting
the sensitivity of integrated systems is the ability of integrated photonic waveguides to efficiently
capture optical power. Grating couplers, which are periodic variations in a waveguide’s refractive
index, enable efficient coupling of light into and out of the waveguide at specific angles and
are widely used in integrated photonics to improve power coupling efficiency [12]. This work
introduces a computationally efficient approach to modeling the flow of optical power through
an integrated grating coupler based microfluidic flow cytometry system such as that proposed
by Jooken et al. [11] for the discrimination of monocytes and lymphocytes. The model is
incorporated into an optimization scheme to maximize collection efficiency and cell detection
sensitivity. The result is an optimized grating configuration that offers a substantial improvement
in optical power coupling efficiency and cell detection sensitivity compared to the configurations
possible using the approach outlined in [11].

1.2. System configuration

The system considered in this work consists of a 30 µm thick microfluidic channel that sits
between Si3N4-on-oxide photonic waveguides as depicted in Fig. 1 and 2. The detailed stack
information is presented in the Sec. 2 of Supplement 1. An Illumination Grating (ILG) and
Forward Scattering Grating (FSG) are fully etched into the bottom and top Si3N4 waveguides
respectively. When the bottom Si3N4 waveguide mode is excited from the left with a 638 nm
source laser, the ILG scatters light across the microfluidic channel as in Fig. 2. The light then
couples into the right propagating mode of the top Si3N4 waveguide via the FSG, after which the
optical power is edge coupled to fiber optics for downstream processing. In an Axial Light Loss
(ALL) mode [11,13], the primary diffraction lobe of the ILG is directed towards the FSG. The
static mode-to-mode power transmission through the system forms the baseline signal for cell
detection events.

A Rbead = 3 µm radius spherical polystyrene bead, representing a monocyte or lymphocyte,
travels through the microfluidic channel. When the bead passes through the ILG light, it scatters
light away from the FSG as in Fig. 3. As a result, less optical power couples into the FSG output
waveguide and a transient dip in the power transmission is observed. The difference between the
peak minimum FSG power transmission, and the respective baseline transmission will henceforth
be called the Peak to Baseline (P2B) and used as a metric for cell detection sensitivity and
characterisation. This metric has been used in other work [11] and is analogous to the "Pulse
Height" metric traditionally used in flow cytometry.

1.3. Polystyrene bead

A polystyrene bead exhibits high orientational symmetry due to its spherical shape, meaning its
optical properties are invariant under rotation. When cells are freely suspended in a quiescent
fluid, they tend to adopt a nearly spherical shape. This default spherical shape is favored because,
in the absence of other forces, the cell’s cytoskeleton and membrane tension minimize surface
area for a given volume [14]. However, once these cells are subjected to flow—particularly in
confined microfluidic channels—several factors influence their morphology. As the shear rate
increases, especially in channels on the order of the cell’s diameter, cells may elongate or flatten
along the direction of flow. Meanwhile, the presence of a large, relatively rigid nucleus [15] in
most white blood cells can limit deformation compared to anuclear cells (e.g., red blood cells
or platelets). Furthermore, activated T cells often become stiffer or change shape differently
than resting cells, which can further alter their response to shear [16]. Consequently, these

https://doi.org/10.6084/m9.figshare.28238372


Research Article Vol. 33, No. 3 / 10 Feb 2025 / Optics Express 4606

Fig. 1. 3D schematic of microfluidic system depicting optical power flow from the ILG to
the FSG and the scattering of light caused by the bead’s passage through the channel.

Fig. 2. 2D Schematic of the static system power flow, an ALL configuration where the
scattered optical power from ILG is directed towards the FSG. The static transmission is a
baseline for detection events.
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Fig. 3. Schematic of the dynamic system power flow when a bead travels through the
channel. The Peak To Baseline (P2B) of the transient dip in power transmission, induced by
the bead’s passage through the channel, is the metric for cell detection in this work.

factors introduce orientational asymmetries in cell shape, breaking the optical uniformity seen in
simple spherical objects. Thus, the utility of a polystyrene bead in flow cytometry modeling is
constrained by its inherent spherical symmetry. It may not accurately mimic the optical behavior
of, for instance, an ellipsoidal cell. However, Jooken et. al. [11] demonstrate that a polystyrene
bead is a sufficient surrogate to meaningfully model and optimize the proposed system for the
discrimination of monocytes and lymphocytes. Furthermore, while the model for the bead in
this work assumes spherical symmetry, a strategy to incorporate arbitrary bead geometries in the
modeling scheme is discussed in Section 3.2.

1.4. Modeling and optimization objectives

From [11] we can assume that P2B in ALL mode increases with bead size up to a saturation
point. Consequently, the difference in P2B between beads of different sizes, ∆P2B∆R, similarly
increases with increasing bead size. By optimizing the P2B for a bead of a given size, e.g.,
Rbead = 3 µm, we implicitly optimize ∆P2B∆R. Since a larger ∆P2B∆R enables better cell
discrimination, the grating configuration will be optimized for maximal P2B.

As such, from a photonic perspective, the objective is to design the ILG and FSG, in particular
their relative position and geometry, for a maximal P2B, resulting in improved bead detection
sensitivity and discrimination. While one might intuitively assume that maximizing baseline
transmission would also maximize P2B, this is not necessarily guaranteed. Achieving this
optimization requires a method for efficiently and accurately simulating transients so that P2B
may be computed for a given grating configuration. This, in turn, necessitates an accurate model
of optical power flow from the excitation laser through the system to the FSG output as the bead
moves through the channel.

Therefore, the objectives of this paper are twofold:

1. Accurately model and simulate optical power transmission through both a static system
consisting of an empty channel and a dynamic system, where a bead passes through the
channel.

2. Integrate the model into an appropriate optimization scheme that adjusts the relative
position and geometry of the gratings to achieve a configuration that maximizes P2B.
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This work presents a 2D model of the system, treating the spherical polystyrene bead as a
2D lossless dielectric cylinder. While a 2D model does not account for effects arising from a
positional offset of the bead along the z-axis, nor does it model any polarization mixing induced by
a spherical dielectric, it should still capture sufficient system behavior to meaningfully optimize
the gratings, provided the gratings are sufficiently wide along the z-axis, relative to the bead’s
radius. The microfluidic channel will be approximated as a static, homogeneous dielectric, with
dynamics and inhomogeneity caused by effects such as turbulence not modeled in this work.
This work will model and optimize uniform period or linearly apodized parameterizations of
fully etched ILG and FSG.

1.5. Computational efficiency

A straightforward approach to modeling the mode-to-mode power transmission through an
inter-layer grating system is to simulate the entire system using Finite Element Method (FEM) or
Finite Difference Time Domain (FDTD) packages such as the commercially available COMSOL
Wave Optics or Ansys Lumerical FDTD [11,17,18]. However, the 30 µm thickness of the
microfluidic channel, depicted in Fig. 2, results in a relatively large simulation space which adds
substantial computational overhead to simulate a largely geometrically featureless region. For
a static, empty channel, inverse design tools such as the Lumerical library lumopt [19] might
be used to optimize the grating configuration and maximize mode-to-mode power transmission.
Such tools leverage the adjoint method and have been widely adopted for the optimization
of grating couplers [20–23]. However, in addition to the computational overhead of FDTD
simulations, these tools do not allow the simulation of transients associated with a dynamical
system as in Fig. 3, but instead, only facilitate mode-to-mode transmission optimization of a
static system such as in Fig. 2.

The inclusion of a dielectric cylinder in the channel might suggest the use of an FDTD or
FEM-based approach, which can accommodate rounded geometries. However, to compute
the transient transmission P2B, the x position of the bead would be swept in discrete steps
through the channel, with mode-to-mode transmission simulated at each position. As a result,
the computation of the transient transmission P2B would necessitate numerous computationally
intensive FDTD or FEM simulations for a single grating configuration, leading to an excessively
high computational cost. This cost can be mitigated by increasing the step size when translating
the bead or by reducing the FDTD or FEM mesh refinement, but such adjustments would
compromise the accuracy of the transient and P2B computations. An optimization loop requiring
an extensive amount of P2B calculations would further compound the overall computational cost,
making the optimization process prohibitively time-consuming.

To address these limitations, this work presents a computationally efficient method to accurately
model the system transient, which is several orders of magnitude faster than an FDTD, leading to
faster and computationally less expensive optimizations. To assess and validate the accuracy of
the proposed method, Lumerical FDTD simulation sweeps are utilized as a reference benchmark.

For grating parameterizations with only 2 variables, such as period and relative position, a
brute-force grid search approach adopting large sweep steps can be used to obtain an approximate
optimal grating configuration within a reasonable time frame. However, when considering higher
precision or a higher-dimensional input space, by e.g. incorporating a linear apodization of
the grating profile, an effective and reliable optimization scheme is crucial for determining the
optimal solution. To this end, Bayesian Optimization (BO) is selected in this work to optimize
the system configuration, enabling a more efficient search of the parameter space with fewer
objective function evaluations and no hyper-parameter tuning compared to Particle Swarm or
Genetic Algorithms [24].
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2. Static system

2.1. Model outline

The first objective is to model the power transmission in a static system, from the excitation to
the FSG output. To simplify the analysis the following observations of the system can be made:

1. The scattering system consists of only passive, linear components i.e. waveguides, grating
couplers, a dielectric bead and a microfluidic channel which can be modeled with lossless
dielectric media.

2. The optical transmission is problem of mode to mode coupling involving only a single
wavelength i.e. 638 nm.

3. The scattering system is comprised of reciprocal components i.e. light transmission is
reversible.

Due to the system’s linearity, it can be decomposed into a number of modular sub-components
and perform a Transmission Matrix Model (TMM) and Angular Spectrum Method based analysis
[25,26]. The components of these transmission matrices are the transmission characteristics
of plane waves ai in Fig. 4 emerging from the gratings at different angles. The empty channel
system, depicted in Fig. 4, can be represented by the matrices:

1. tA→B transmission from the guided mode of the input waveguide (A) to the plane waves at
the bottom of the microfluidic channel (B) for a given ILG geometry

2. tB→C transmission of plane waves propagating from the bottom (B) to the top (C) of
microfluidic channel

3. tC→D transmission of the plane waves at the top of the microfluidic channel (C) to the
guided mode of the output waveguide (D) for a given FSG geometry

Fig. 4. TMM modularization of the static system via decomposition of grating fields Ez
into plane waves of amplitudes ai propagating at an angle θi. Static modal coupling from A
to D is calculated by cascading the ILG, microfludic channel and FSG matrices resulting
from this TMM modularization.

Cascading the transmission matrices of the sub-components between the input waveguide
and the output waveguide simulates the modal flow through these sub components such that the
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input to output power coupling may be calculated via Eqn. (1). Using an FDTD to simulate the
broadband fields throughout the entire system, which primarily consists of a uniform microfluidic
channel, adds unnecessary computational overhead since we are only interested in mode to mode
coupling at a single wavelength. The problem is instead reduced to calculating the fields above the
gratings, performing a plane wave decomposition of these fields followed by the multiplication of
a small number of matrices. Such numerical operations can be efficiently implemented in Python
and are several orders of magnitude faster than an FDTD simulation of the complete system.
The plane wave decomposition will only include upward propagating waves, disregarding any
downward or back-scattered waves. Given the substantial thickness of the channel, fields reflected
within it would disperse significantly before reaching and coupling to the FSG. Therefore, their
contribution to mode-to-mode transmission is negligible and it is a reasonable approximation to
discard downward propagating or back-scattered waves.

TA→D = |tA→D |
2 = |tC→D · tB→C · tA→B |

2 (1)

2.2. Illumination grating

The transmission matrix tA−>B for a given ILG geometry may be found by first calculating
the z-polarized electric fields above the grating (B) when the z polarized guided mode of the
input waveguide (A) is used as an excitation see, Fig. 4. A Discrete Fourier Transform (DFT)
is then applied to the fields to extract a discrete angular plane wave spectrum and populate the
elements of tA−>B. The fields are simulated using Cavity Modeling Framework (CAMFR) [27],
an eigenmode expansion package with a Python interface. For a relatively large but simple
stack of uniform layers such as in Table S1 of Supplement 1, CAMFR first computes the stack
eigenmodes and inter-layer coupling to efficiently evaluate the electric fields at a given number
of points above the grating for a single-wavelength guided mode excitation. This computation
could alternatively be performed by an FDTD solver to compare its efficiency with CAMFR, as
in Sec. 5.C. of Supplement 1. However, an FDTD computes broadband fields throughout the
large slabs of the ILG with a sufficiently discretized mesh. Since the objective is to compute
fields of a single wavelength through the geometrically simple slabs of the ILG, an FDTD solver
potentially adds unnecessary computational overhead. Table S2 of Supplement 1 supports this
and consequently the FDTD solver is reserved for validation.

The DFT in Eqn. (2) is then applied to the M = 300 sample field points at positions xm
computed by CAMFR, to extract each plane wave ai of angle θi, or equivalently angular bin ∆θi,
for N upward propagating plane waves between −90◦ ≤ ∆θi ≤ 90◦ schematically represented in
Fig. 4. Examples of plane wave transmission spectra for different periods are found in Fig. S3 of
Supplement 1.

ai[∆θi] =
Ez[∆θi]
√
ηw

=

√︄
∆ki

2πηw

M∑︂
m=0

Ez[xm]ej∆ki ·xm (2)

In Eqn. (2), ηw = 284Ω is the electromagnetic impedance of the water channel. The wave-
number bin widths ∆ki used in in Eqn. (2) were chirped by Eqn. (3), to maintain equal angular
bin ∆θi widths. In Eqn. (3) λ0 is the free space wavelength and nw is the corresponding the
refractive index of water 1.33. While the method described in this work can be applied to any
wavelength, all the simulations presented in this work assume a free space wavelength of 638
nm. Equal angular bin widths are both notationally convenient and, as demonstrated in Sec. 7 of
Supplement 1, simplify the construction of the transmission matrix tP of a bead with circular
symmetry.

∆ki =
2πnw

λ0
sin(∆θi) (3)

For a unity power input guided mode, the plane wave components found using Eqn. (2)
populate the entries of the ILG transmission matrix tA−>B in Eqn. (4). As such, tA−>B represents

https://doi.org/10.6084/m9.figshare.28238372
https://doi.org/10.6084/m9.figshare.28238372
https://doi.org/10.6084/m9.figshare.28238372
https://doi.org/10.6084/m9.figshare.28238372
https://doi.org/10.6084/m9.figshare.28238372
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the discrete angular transmission spectrum for upwards propagating plane waves traveling at an
angle of −90◦ ≤ ∆θi ≤ 90◦ to the normal.

tA→B =

⎛⎜⎜⎜⎜⎝
t(1)A→B

...

t(N)

A→B

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
a1
...

aN

⎞⎟⎟⎟⎟⎠
(4)

2.3. Microfluidic channel

The empty microfluidic channel may be considered a lossless, uniform, dielectric medium. A
plane wave ai propagating through a lossless dielectric undergoes a phase rotation ϕi given by
the dot product, Eqn. (5) [26], of the plane wave’s ki and the distance traversed by the plane wave
r1, depicted in Fig. 5.

ϕi = ki · r1 =
2πnw

λ0

√︂
x2

1 + y2
1cos(θi − α1) (5)

Fig. 5. System schematic depicting plane wave ai with propagation angle θi and the distance
traversed by the plane wave through the microfluidic channel r1 (composed of x1 and y1)
at an angle α1. These parameters are used to determine the plane wave phase rotations by
Eqn. (6) used in the construction of the empty microfluidic channel transmission matrix in
Eqn. (7).

Consequently, each plane wave in a discrete transmission spectrum such as tA−>B undergoes a
different phase rotation as they traverse the same displacement r1. The phase rotation for each
plane wave in tA−>B is used to calculate its respective transmission by Eqn. (6) which is then
used to populate the transmission matrix tB−>C in Eqn. (7).

t(i)B→C = e−jφi (6)

tB→C =

⎛⎜⎜⎜⎜⎝
t(1)B→C · · · 0

...
. . .

...

0 · · · t(N)

B→C

⎞⎟⎟⎟⎟⎠
(7)

In this scheme, spatially translating the endpoint of r1 e.g. moving the endpoint from x1 = 0µm
to x1 = 5µm or x1 = 10µm is equivalent to regenerating tB−>C with a new set of phase rotations
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for each angular spectrum component such as in Fig. 6. The advantage of this scheme is that
spatially translating a sub-component with a fixed transmission matrix, such as a grating or bead,
becomes a simple and fast operation in contrast to re-simulating fields throughout the entire
system in an FDTD when a sub-component is translated.

Fig. 6. Phase rotations applied to a plane wave spectrum with propagation angles −90◦ ≤

∆θi ≤ 90◦ caused by translation along r1 for x1 = 0µm, 5µm, 10µm. The FSG or bead
position in the TMM is fixed by populating tB−>C in Eqn. (7) with the appropriate set of
phase rotations.

2.4. Forward scattering grating

The transmission matrix of the FSG tC−>D was found by the same procedure as the ILG but three
additional steps are performed and described in more detail in Sec. 4 of Supplement 1. First, a
180◦ rotational transformation, R180◦ in Eqn. (8) orients the grating as it appears in the system
and in Fig. S7 of Supplement 1, applying a 180◦ rotation of the angular spectrum. Second, the
reciprocity theorem dictates that the transmission of the waveguide mode to the scattered fields
may be reversed by Hermitian conjugation, yielding the desired transmission direction as in
Eqn. (8). Finally, the FSG is horizontally translated to the desired zero position.

tC→D =
(︂
t(1)C→D · · · t(N)

C→D

)︂
= R180◦

⎛⎜⎜⎜⎜⎝
t(1)D→C

...

t(N)

D→C

⎞⎟⎟⎟⎟⎠
H

(8)

2.5. Model validation and benchmarking

For a given grating configuration, the sub-component matrices tA−>B, tB−>C and tC−>D may now
be found and used to evaluate the static mode to mode power transmission TA−>D via Eqn. (1).
The performance of the model may be validated by comparing its output and computational
runtime with an FDTD reference simulation. In this approach, ILG and FSG’s with equal periods
Λ = 0.49 µm were defined in both the TMM and Lumerical FDTD and the mode to mode power
transmission was calculated while sweeping the x position of the FSG from −10 µm to 10 µm.
While ΛILG = ΛFSG = 0.49 µm was chosen for the validation and benchmarking, the choice is
not critical and any grating period could have been used. The sweep results for 21-period and
41-period gratings provided in Fig. 7 demonstrate excellent agreement between the TMM and
FDTD methods. The transmission profiles exhibit a very similar shape, showing coinciding
peaks and small transmission errors across the sweep range.

https://doi.org/10.6084/m9.figshare.28238372
https://doi.org/10.6084/m9.figshare.28238372
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Fig. 7. Power transmission calculated while sweeping FSG horizontal offset xFSG by both a
2881 plane wave TMM and Lumerical FDTD for grating periods ofΛILG = ΛFSG = 0.49 µm.
The similar shape, coinciding peaks and small transmission errors indicate close agreement
between the TMM and FDTD simulations.

The TMM does not take into account plane wave reflection between the ILG and FSG stacks.
As the period count increases, optical power scattered by the ILG, and consequently optical
power reflected between the ILG and FSG stacks increases. While for a 30 µm channel thickness
this effect would be small, it potentially accounts for the slightly larger transmission error in the
case of the longer, 41-period grating. The FDTD convergence analysis outlined in Sec. 5.B. of
Supplement 1, shows that the FDTD results do not perfectly converge for a 41-period grating
even at the highest mesh accuracy setting. This introduces an additional source of error that
may contribute to the difference in transmission characteristics. Nonetheless, the TMM for a
static system produces results that are sufficiently close to those of FDTD simulations, validating
its accuracy. Table 1 compares the total computation times for the sweeps in Fig. 7. A single
full FDTD simulation in Ansys Lumerical FDTD, using an automatic non-uniform mesh, takes
on average 840 s (see Fig. S12 of Supplement 1) and 5109 s (see Fig. S13 of Supplement 1).
To estimate the total sweep computation time for the FDTD, the average is multiplied by the
number of positions in the sweep (101 positions). This represents a 4 to 5 orders of magnitude
improvement in computational runtime, demonstrating the power of the TMM. The computation
time of the TMM is dominated by the grating field calculations in CAMFR, rather than the
transmission matrix multiplications. As such increasing the sweep length or resolution negligibly
affects the computation time of the TMM. Conversely, increasing the sweep length or resolution
would significantly ramp up the total computation time for the FDTD model.

Table 1. Computation times of the 101 point
static xFSG sweeps in Fig. 7 performed on the

same computational hardware.

Periods Model Computation Time (s)

21 FDTD 8.48 × 104

21 TMM 15

41 FDTD 5.16 × 105

41 TMM 50

https://doi.org/10.6084/m9.figshare.28238372
https://doi.org/10.6084/m9.figshare.28238372
https://doi.org/10.6084/m9.figshare.28238372


Research Article Vol. 33, No. 3 / 10 Feb 2025 / Optics Express 4614

2.6. Grid search

The model can be utilized to effectively compute the static transmission on a uniform grid by
sweeping the grating period in 201 steps of 1 nm from 0.4 µm to 0.6 µm, and the FSG offset
across 201 steps of 10 nm between −5 µm and 15 µm. The results of this sweep are shown in
Fig. 8. Little power coupling is observed below 0.42 µm, where a significant portion of the
excitation power is back-reflected within the waveguide rather than radiated. A maximum static
transmission of Tmax = 0.1374 is obtained with grating periods of ΛILG = ΛFSG = 0.510 µm and
a FSG offset of xFSG = 5.30 µm for gratings with 20 periods. The brute-force grid search using
the TMM method took the TMM approximately 54 minutes to complete. Considering FDTD
simulations with a computational runtime of roughly 14 minutes per grating configuration, we can
predict that the grid search shown in Fig. 8 would take approximately 201 × 201 × 14 min ≈ 392
days on the same computational hardware.

Fig. 8. Static power transmission calculation, sweeping ΛILG = ΛFSG (for a 20-period
grating) and the FSG horizontal offset xFSG. The maximum static power transmission is
Tmax = 0.1374 obtained with ΛILG = ΛFSG = 0.510 µm and xFSG = 6.1 µm and indicated
on the heat map with a black cross.

3. Dynamic system

3.1. Model outline

With the TMM for the static system validated, the model may be expanded to a dynamic system
where a polystyrene bead passes through the microfluidic channel. Placing a bead in the channel
replaces the tB→C matrix with 3 matrices such that the input to output power transmission may
be described by Eqn. (9):

1. tB→P transmission of plane waves, ai in Fig. 9 propagating from the bottom (B) of
microfluidic channel to the center of the bead (P)

2. tP the scattering of plane waves by the bead (P), a dielectric cylinder in 2D

3. tP→C transmission of the plane waves as in Fig. 9 scattered by the bead (P) propagating to
the top of the microfluidic channel (C)

TA→D = |tA→D |
2 = |tC→D.tP→C.tP.tB→P.tA→B |

2 (9)

For a bead of a given geometry tP is a fixed matrix. However, as will be demonstrated,
translating the position of the bead in the channel is equivalent to regenerating the entries of
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Fig. 9. TMM modularization of the dynamic system with a bead P at a position q in the
channel. Modal coupling from A to D is calculated by cascading the ILG, microfludic
channel, bead and FSG matrices resulting from this TMM modularization.

the tA→P and tP→C matrices, a simple and fast operation. As such, the transient transmission
associated with the bead’s passage through the channel (Fig. 3) can be efficiently simulated
by iteratively solving Eqn.9) while updating the tA→P and tP→C matrices based on the bead’s
position. This enables the fast evaluation of a P2B for a given grating configuration leading to
significantly more efficient optimizations. Performing the same computation using an FDTD
would require simulating the entire system for each position of the bead as it propagates through
the channel, resulting in computational overhead too large to feasibly use in an optimization loop.
Consequently, the model enables the efficient optimization of transient P2B, a more meaningful
Figure of Merit for cell detection compared to static power transmission.

3.2. Polystyrene bead

In order to facilitate the computation and optimiziation of a transient P2B, a coherent transmission
matrix for the bead tP must be incorporated into the TMM. In 2D modeling, the bead is treated as
a lossless, dielectric cylinder infinite in z, whose scattered fields, when excited with a plane wave,
can be computed using Mie Scattering theory. In our system, the free space wavelength λ0 = 638
nm is comparable to the bead radius Rbead = 3 µm. As such, no Rayleigh approximations are
applicable and Maxwell’s equations must be solved in full for the correct physical boundary
conditions using a scheme such as that described in [28]. In this work, the Python library Scatsol
[29] is selected for this purpose. The fields are then used to calculate the transmission matrix of
the bead tP using the novel scheme described in Sec. 7 of Supplement 1. Assuming a bead with
a circular symmetry, and using a spectrum of plane waves with equal angular spacing, only one
row/column of tP needs to be computed. The other rows/columns are simply shifted copies. The
bead transmission matrix therefore only needs to be calculated once (for each bead diameter)
and may be re-used within the TMM. The construction of a 2881 plane wave bead transmission
matrix takes approximately 6 hours on the same computational hardware used elsewhere in this
work. While this represents additional computational overhead, the matrix construction for a
given bead geometry is a one-time calculation and isn’t included in the TMM computation times.

In the TMM, the bead is abstracted to a point scattering matrix tP unique to the bead geometry
and refractive index. While this work primarily simulates a system where Rbead = 3 µm, the
procedure described in Sec. 7 of Supplement 1 can be performed for a dielectric cylinder of
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any radius to produce scattering matrices for beads of different sizes. For scattering objects
with arbitrary, non cylindrical geometries, calculating the scattered fields due to a plane wave
excitation might not be possible using analytical methods. In such cases the fields may be
calculated using an FEM solver, then following a scheme similar to Sec. 7 in Supplement 1, may
be used to construct a scattering matrix. However, for a non-symmetric bead it would become
necessary to compute the scattered fields for every incident angle. tP may be replaced with
the transmission matrix for an arbitrary scattering object without effecting the grating matrices,
tA−>B and tC−>D or the propagation matrices tB−>P and tP−>C. Consequently, recalculating and
replacing tP is all that’s necessary to simulate the transient P2B of any arbitrary scattering object
passing through the channel. The TMM can then be used to simulate and optimize the system for
the discrimination of highly aspherical cells.

3.3. Microfluidic channel

In the TMM, representing the bead as an abstract transmission matrix tP collapses the spatial
features of the bead into a point scattering object. Placing a bead in the channel replaces tB−>C
with a matrix tP governing the scattering of plane waves by the bead and two additional matrices
tB−>P and tP−>C governing the propagation of plane waves from the ILG (B) to the bead (P)
and the bead to the FSG (C) respectively. The phase rotations plane waves incur from channel
propagation for a bead at position q are similarly calculated using Eqns. (10) and (11) based on
Fig. 10. The phase rotations are then used to populate the transmission terms in the tB−>P and
tP−>C matrices.

ϕ2,i = k2,i · r2 =
2πnw

λ0

√︂
x2

2 + y2
2cos(θ2,i − α2) (10)

ϕ3,i = k3,i · r3 =
2πnw

λ0

√︂
x2

3 + y2
3cos(θ3,i − α3) (11)

tB→P =

⎛⎜⎜⎜⎜⎝
t(1)B→P · · · 0

...
. . .

...

0 · · · t(N)

B→P

⎞⎟⎟⎟⎟⎠
(12)

tP→C =

⎛⎜⎜⎜⎜⎝
t(1)P→C · · · 0

...
. . .

...

0 · · · t(N)

P→C

⎞⎟⎟⎟⎟⎠
(13)

3.4. Model validation and benchmarking

Having calculated the transmission matrix tP for a Rbead = 3 µm bead, the TMM can now be
validated by comparing its performance against FDTD simulations. The matrices tA→B and
tC→D were generated for gratings with ΛILG = ΛFSG = 0.49 µm and 21 and 41 periods. Using
Eqn. (9), power transmission through the dynamic system was calculated while sweeping the
bead’s x position in steps of 100 nm between −5 µm<x2<20 µm and −5 µm<x2<30 µm for the
21-period and 41-period gratings respectively, with the y position fixed at the mid-channel. This
was performed for an FSG offset of xFSG = 3.1 µm and a 2881 plane wave expansion.

Figure 11 shows the results of the simulations compared to those obtained via Lumerical
FDTD. The results demonstrate excellent agreement between the TMM and FDTD for the
21-period grating configuration and good agreement for the 41-period configuration. For the
41-period grating, the baseline error between the TMM and FDTD appears to be 0.0108, close to
the maximum static error of 0.0102 found in Fig. 7(b). Once again, the error is likely due to
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Fig. 10. System schematic depicting plane waves a2,i and a3,s with propagation angles θ2,i
and θ3,i traversing distances r2 (composed of x2 and y2) and r3 (composed of x3 and y3) at
angles α2 and α3. These parameters are used to determine the plane wave phase rotations by
Eqn. (10) and (11) used to construct the channel transmission matrices in Eqns. (12) and
(13).

inter-component reflection ignored by the TMM. However, the transients’ shapes and their P2Bs
are sufficiently similar to justify using the TMM for approximating the optimal 41-period grating
configuration.

Fig. 11. Transient power transmission calculated while sweeping the bead position by both
a 2881 plane wave TMM and Lumerical FDTD for gratings with ΛILG = ΛFSG = 0.49; µm
and xFSG = 3.1 µm. The similar shape, trough position and small error indicate sufficiently
close agreement between the TMM and FDTD simulations.

The computation times for the dynamic bead position sweeps in Fig. 11 are outlined in Table 2.
An FDTD simulation adopting a mesh accuracy setting of 5 took, on average, 999 s to complete
a single point in the bead position sweep for the 21-period grating configuration (see Fig. S14
of Supplement 1). Additionally, with a mesh accuracy setting of 8, a single point in the bead
position sweep took an FDTD simulation on average 6881 s for the 41-period configuration (see
Fig. S15 of Supplement 1). The averages for each grating configuration were multiplied by the
number of sweep points to estimate the total FDTD computation time. Table 2 demonstrates a
four to five order-of-magnitude improvement in computational efficiency using the TMM, which

https://doi.org/10.6084/m9.figshare.28238372
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becomes even more significant with finer bead position resolution sweeps. As such, it is now
feasible to run an optimization algorithm on the grating configuration for maximum P2B within
a reasonable time frame.

Table 2. Computation times of the dynamic sweeps in
Fig. 11 performed on the same computational hardware.

Periods Points in Sweep Model Computation Time (s)

21 251 FDTD 2.51 × 105

21 251 TMM 15

41 351 FDTD 2.41 × 106

41 351 TMM 53

3.5. Grid search

The benefits of the model’s efficiency become evident when performing a P2B grid search (GS)
for grating configurations with 20 periods, varying between 0.4 µm ≤ ΛILG = ΛFSG ≤ 0.6 µm in
200 increments of 1 nm, and FSG offsets between −5 µm ≤ xFSG ≤ 15 µm in 200 increments of
10 nm. An FSG offset increment of 10 nm, rather than 1 nm, is used to reduce the grid search
completion time. For each grating configuration, x2 is swept between −10 µm ≤ x2 ≤ 30 µm in
steps of 100 nm with y2 fixed mid-channel to compute the transient P2B. Figure 12(a) shows
the results of this grid search. The maximum transient P2B of 0.1308, for the blue trace in in
Fig. 12(b), is obtained with ΛILG = ΛFSG = 0.510 µm and xFSG = 6.10 µm.

(a) (b)

Fig. 12. (a) P2B calculation, sweeping ΛILG = ΛFSG (with a 20-period grating) and the
FSG horizontal offset xFSG. The maximum transient P2B = 0.1308, depicted by the orange
trace in (b), is obtained with ΛILG = ΛFSG = 0.510 µm and xFSG = 6.10 µm and indicated
on the heat map (a) with a red cross. The optimum configuration found previously in Sec.
2.6 is indicated with a black cross in (a) and the blue trace in (b), demonstrating that the
optimum configurations for a static and dynamic system are not equivalent.

Comparing the results of Fig. 12 with Fig. 8, there is a strong, albeit imperfect, correlation
between P2B and static transmission. Notably, the grating configuration that yields the maximum
static transmission is close but not identical to the configuration that yields the maximum P2B.
The grid search took approximately 10 hours to simulate the P2B for 201× 201 = 40, 401 grating
configurations with 10 nm interval FSG offset steps. For Lumerical FDTD to complete this same
task on the same computing hardware, it would have taken approximately 40, 401 × 70 hrs ≈

2.83 × 106 hours, or 117,386 days, an impractically long period of time.
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3.6. Bead y offset

The modeling so far has assumed that the bead propagates through the microfluidic channel
with its y position fixed at the mid-channel. In reality, the bead may pass through the channel
with a vertical offset, which can affect the profile of the transient and, consequently, the P2B.
Indeed, in [11] inertial focusing directs the beads towards the top and bottom walls of the channel.
The TMM allows us to efficiently evaluate the impact of a vertical offset, e.g., ±2 µm from the
channel center, on the transient, as shown in Fig. 13(a), where we observe slight changes in
the shape and position of the transient. Additionally, the TMM enables us to characterize the
distribution of P2B for a range of bead vertical offsets, such as −2 µm<∆y<2 µm in 10 nm steps.

(a) (b)

Fig. 13. (a) Transients when the bead is offset in y from mid-channel by 0 µm, −2 µm and
2 µm for the grating configuration in Fig. 12. (b) Distribution of P2B for y offsets in 10 nm
increments between −2 µm and 2 µm for the grating configurations in Figs. 8 and 12. The
TMM enables efficient visualization and quantification of robustness for a certain grating
configuration.

Figure 13(b) depicts such distributions for the grating configurations identified via GS in
Figs. 8 and 12. From Fig. 13(b), we observe that the P2B distribution appears slightly tighter
for the grating configuration shown in Fig. 12. The standard deviation of this distribution, σ∆y,
quantifies the robustness of the grating configuration to bead vertical offset ∆y and serves as
an additional metric for evaluating the performance of a grating configuration. The values
σ∆y = 0.0006 and σ∆y = 0.0004 for the grating configurations in Figs. 8 and 12, respectively,
confirm our visual intuition. While it is possible to devise an optimization objective function that
minimizes this standard deviation, thereby maximizing robustness, this work uses this metric to
compare grating configurations post P2B optimization.

3.7. Bead size

The modeling so far has assumed that the bead representing a biological cell has a fixed radius of
Rbead = 3 µm. In the TMM, the transmission matrix for a bead of a specific radius is generated
only once (using the scheme described in Sec. 7 of Supplement 1) and then repeatedly used
to simulate transients for different grating configurations. Similarly, the transmission matrix
for a bead with a Rbead = 4.5 µm radius can be generated and replace the Rbead = 3 µm matrix,
allowing the TMM to quickly simulate the impact of varying bead sizes on the transient and P2B,
as shown in Fig. 14. The difference in P2B magnitude for cells of different sizes ∆P2B∆R serves
as an additional metric for evaluating the performance of a grating configuration. A grating
configuration that yields a larger difference in P2B for different cell sizes is better suited for
discriminating between various types of cells.

https://doi.org/10.6084/m9.figshare.28238372
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Fig. 14. Transients for beads of different sizes for the grating configuration in Fig. 12. The
difference in P2B of such transients is another optimizable metric enabled by the TMM.

Since the purpose of forward scattering is to measure and distinguish between cells of different
sizes, this is a particularly valuable metric in flow cytometry. While it is possible to incorporate
the P2B difference into an objective function for optimization, this work uses it as an additional
metric to further to compare grating configurations post-P2B optimization.

4. Optimization

4.1. Outline

With an accurate and computationally efficient means of modeling transients, we may now optimize
the grating configuration so as to maximise the P2B. We investigate 2 grating parameterizations
in this work, a uniform period and fill grating and an apodized grating where period and fill are
varied linearly along the length of the grating. For a uniform grating, the period, period count and
FSG offset xFSG are optimizable parameters. It is possible to perform an exhaustive grid search
of an integer period count between 20 and 40, 200 increments of 1 nm of the period between
0.4 µm ≤ ΛILG = ΛFSG ≤ 0.6 µm, and 2000 increments of 1 nm of the FSG offset between
−5 m ≤ xFSG ≤ 15 µm. However, based on the 10 hours required to complete the grid search
depicted in Fig. 12(a), increasing the resolution by a factor of 10 and incorporating 21 different
period numbers would take over 10 hrs × 10 × 21 = 2100 hrs, or 84 days. Additionally, this work
employs a linearly apodized grating parameterization detailed in Sec. 8.B. of Supplement 1
which is a modified version of the strategy described in [30]. This approach introduces linear
apodization strength as an additional optimizable variable. With three continuous and one
discrete variable, the dimensionality of the search space becomes too high for a grid search to be
feasible. Therefore, an optimization algorithm is required to efficiently explore the parameter
space. The optimization problem is classified in more detail in Sec. 9.A of Supplement 1.

Genetic and Particle Swarm Optimization algorithms have been historically used in grating
coupler optimization and perform well even in higher-dimensional parameter spaces [18,31–33].
However, these algorithms require multiple objective function evaluations for each population or
swarm iteration, leading to significant computational overhead and time-consuming optimization
runs. Additionally, both algorithms’ update rules involve several tunable hyperparameters and
stochastic terms, which can cause the population or swarm to prematurely converge on a local
rather than a global maximum due to semi-stochastic updates or suboptimal hyperparameter
settings. While the hyperparameters can be adjusted to favor exploitation or exploration, ensuring
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convergence to a global optimum, the best settings for a particular optimization problem are not
always known a priori. Performing multiple computationally expensive optimization runs to
fine-tune these hyperparameters further compounds the computational overhead.

Bayesian Optimization using Gaussian Processes is an optimization technique that leverages a
probabilistic model to efficiently predict and explore different parameter sets, described in more
detail in Sec. 9.B of Supplement 1. BO has more recently been used in the optimization of
grating couplers [34–36] and demonstrated an order-of-magnitude reduction in objective function
evaluations compared to other algorithms in photonic device optimization [24]. In this work, the
computational efficiency of BO is used to conduct a sweep across different integer numbers of
grating periods. Grating period counts within a relatively small range are explored, specifically
from 20 to 40, and for each integer value, BO is used to search for the optimal continuous grating
parameters, such as period and FSG offset. Although methods exist to accommodate integer
parameters within BO algorithms [37], this work takes advantage of the low dimensionality of
the parameterization and the narrow range of period counts to perform a more exhaustive search.
A Gaussian Process with a Matérn 5/2 kernel and an expected improvement acquisition function
are used in the BO eliminating the need for tunable hyperparameters. Each BO consisted of 10
initialization and 100 training samples.

4.2. Results

Table 3 outlines optimum grating configurations for the uniform (ID 3 in Table 3) and apodized
(ID 4) parameterizations compared to the best result found by a grid search (GS) of the static
transmissions (ID 1) from Sec. 2.6 and P2B’s (ID 2) from Sec. 3.5. The optimization results are
outlined in detail in Sec. 10 of Supplement 1. A GS of BO’s for a uniform grating parameterization
(ID 3) yields a P2B of 0.1389 as in Fig. 15, a modest 0.26 dB increase on the result found by a GS
of P2B (ID 2). The result was substantially improved with an apodized grating parameterization
(ID 4) achieving a P2B of 0.221 as in Fig. 15, a 2.02 dB P2B improvement on the optimum
obtained via a uniform grating parameterization (ID 3). Furthermore, this grating configuration
represents a 2.49 dB improvement on the grating configuration found using a GS of uniform
grating parameters to maximise static transmission (ID 1). All grating configurations are highly
robust to variance in the vertical offset of the bead σ∆y, with only small differences in σ∆y found
between grating configurations. The apodized grating (ID 4) yields the largest ∆P2B∆R at 0.0213.
This is a 1.92 dB improvement on the next best configuration (ID 3), making the apodized grating
best placed to discriminate between beads of radii Rbead = 3 µm and Rbead = 4.5 µm.

Table 3. Grid search (GS) and Bayesian Optimization (BO) results. For uniform grating
parameterisations, the apodization entry is left blank to indicate no apodization.

ID Type Period
Count

Period
(nm)

FSG
Offset
(µm)

Apodization
(1/µm)

P2B σ∆y ∆P2B∆R

1 GS 20 510 5.30 0.1245 0.0006 0.0105

2 GS 20 510 6.10 0.1308 0.0004 0.0049

3 GS + BO 24 511 5.323 0.1389 0.0003 0.0137

4 GS + BO 39 423 −3.959 0.0135 0.2210 0.0003 0.0213
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Fig. 15. Transient and P2B of the uniform (ID 3) and apodized (ID 4) grating configurations
found via GS of BO’s in Table 3. The apodized grating (ID 4) is the best result found in this
work, showing a 2.02dB improvement over the uniform grating (ID 3).

5. Discussion

This work successfully developed and validated a 2D TMM to simulate static and transient
transmission in a microfluidic grating system, achieving a computation speed four to five orders-
of-magnitude faster than an FDTD solver. The TMM’s computational efficiency enabled the
fast simulation of effects that are computationally prohibitive to model with an FDTD solver,
particularly the impact of variations in the bead’s y position and size on the transient. The model
was further employed in a series of grid searches and Bayesian optimizations to efficiently tune
both uniform and apodized grating parameters, maximizing the transient P2B. An initial result
(see Fig. 8) was obtained by a grid search of uniform grating configurations in a static system
model, a similar approach to [11], but using the proposed TMM instead of FDTD simulations.
Progressive refinements in modeling, optimization approach, and grating parameterization each
demonstrated an improvement in P2B and the final apodized grating configuration, optimized
for a dynamic system, delivered a 2.49 dB improvement in P2B over the initial result. The
results illustrate the effectiveness of this approach for enhancing transient pulse characteristics in
microfluidic systems.

While this work demonstrated a number of the TMM’s aspects and capabilities there are
several ways these could be expanded on in future work. One potential direction is incorporating
the area between the transient and baseline as an additional metric, which is commonly used in
flow cytometry. Although not the focus of this work, this area could easily be included in a new
objective function, allowing the grating configuration to be optimized for maximum area instead
of P2B without any additional computational cost. Furthermore, metrics such as ∆P2B∆R and
σ∆y could be integrated into a multi-objective function or robust optimization method.

Extending the model to 3D, by accounting for the z variation in grating geometry and modeling
the bead as a dielectric sphere, would enable simulations of effects like polarization mixing,
thus improving accuracy. Although this would increase computational cost, the efficiency gain
compared to a 3D FDTD solver would still be substantial.
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While this work focused on uniform and linearly apodized parameterizations, future studies
could explore non-linear apodizations or optimize individual grating teeth widths within the
optimization loops to better shape the radiated field profile and enhance the transient P2B.

Simulating and optimizing additional collector gratings, such as the Side Scattering Grating
described in [11] that collects light that has been scattered by the bead, is also feasible with the
TMM. A process similar to that used for the FSG can be applied to construct a transmission matrix
for the Side Scattering Grating, which can then replace the FSG in the TMM. This additional
TMM can be employed to optimise an alternative P2B objective function, where minimal baseline
and maximal peak is desirable. This new objective configuration can be incorporated into a
multi-objective function for the simultaneous optimization of the Forward and Side Scattering
Gratings.

In this work, the microfluidic channel was approximated as a static, homogeneous medium. In
reality, the bead is propelled through the channel by dynamic, microfluidic effects described in
[11] that would disturb the uniformity of the dielectric profile. Future work could model effects
such as turbulence as randomized noise in the channel transmission matrices tB−>P and tP−>C.
Several transients may be efficiently simulated in a turbulent channel to evaluate an average P2B
which may then be incorporated into an objective function.

The mathematical operations in this work were performed using the standard Python library,
NumPy. While matrix operations are fast (NumPy uses optimized C libraries under the hood),
Python is an interpreted language, so its execution is generally slower compared to a compiled
language like C. Future work could streamline larger optimizations by pre-calculating matrices
for lookup tables or using a just-in-time compiler like Numba [38] for key operations to reduce
the computational overhead of Python. Finally, while the system concept was experimentally
demonstrated in [11], future work could fabricate and experimentally characterize the optimized
design presented in this work.
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