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Reservoir Computing with All-Optical Non-Fading Memory
in a Self-Pulsing Microresonator Network

Alessio Lugnan,* Stefano Biasi, Alessandro Foradori, Peter Bienstman,
and Lorenzo Pavesi*

Photonic neuromorphic computing may offer promising applications for
a broad range of photonic sensors, including optical fiber sensors, to enhance
their functionality while avoiding loss of information, energy consumption,
and latency due to optical-electrical conversion. However, time-dependent
sensor signals usually exhibit much slower timescales than photonic
processors, which also generally lack energy-efficient long-term memory.
To address this, a first implementation of physical reservoir computing with
non-fading memory for multi-timescale signal processing is experimentally
demonstrated. This is based on a fully passive network of 64 coupled
silicon microring resonators. This compact photonic reservoir is capable
of hosting energy-efficient nonlinear dynamics and multistability. It can
process and retain input signal information for an extended duration, at least
tens of microseconds. This reservoir computing system can learn to infer the
timing of a single input pulse and the spike rate of an input spike train, even
after a relatively long period following the end of the input excitation. This
operation is demonstrated at two different timescales, with approximately
a factor of 5 difference. This work presents a novel approach to extending
the memory of photonic reservoir computing and its timescale of application.

1. Introduction

Photonics is an attractive platform for neuromorphic comput-
ing, offering high throughput, low latency, and energy-efficient
linear operations.[1–3] Indeed, photonic hardware can execute
the linear operations behind inter-layer connections in artifi-
cial neural networks (ANNs), which is particularly useful for ac-
celerating large ANN models in data centers. In contrast, edge

A. Lugnan, S. Biasi, A. Foradori, L. Pavesi
Nanoscience Laboratory
Department of Physics
University of Trento
Trento 38123, Italy
E-mail: alessio.lugnan.1@unitn.it; lorenzo.pavesi@unitn.it
P. Bienstman
Photonics Research Group
Ghent University - imec
Ghent 9052, Belgium

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/adom.202403133

© 2025 The Author(s). Advanced Optical Materials published by
Wiley-VCH GmbH. This is an open access article under the terms of the
Creative Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.1002/adom.202403133

computing applications typically require
smaller, more specialized ANNs that op-
erate on compact and affordable hard-
ware, capable of continuous learning or
easy retraining for new conditions.[4,5] In
this context, photonic neuromorphic hard-
ware is particularly attractive if directly ap-
plied to information encoded in the opti-
cal domain, such as telecom data through
optical fibers and optical sensors output.
This would enable avoiding or reducing
latency and power consumption due to
optical-to-electrical conversion. However,
competitive ANN solutions require scal-
able and energy-efficient nonlinear opera-
tions and memory (the latter being nec-
essary for processing time-dependent sig-
nals). These requirements remain diffi-
cult to achieve in photonics due to the
lack of direct photon-photon interaction.

As we demonstrate in this paper, these
key properties can be found in silicon
microring resonators (MRRs), which

are simple CMOS-compatible devices[6] widely used in photon-
ics for a variety of applications, from wavelength filtering to
sensing. MRRs provide an exceptional platform for light-matter
interactions, significantly enhancing nonlinear effects. At 1550
nm, these nonlinearities are triggered by two-photon absorption
(TPA) and the associated free carrier absorption and dispersion
(FCA and FCD).[7,8] TPA generates free carriers in the ring waveg-
uide. Subsequently, these carriers absorb light and undergo ther-
malization, leading to heat production. This process raises the
silicon’s temperature, altering its refractive index through the
thermo-optic (TO) effect. FCD and TO effects cause blue and red
shifts, respectively, in the resonance frequency of the MRR.[9,10]

Additionally, FCD and TO effects have distinct relaxation times
and dependencies on the optical field amplitude. Specifically, the
thermal and carrier lifetimes are generally around 60–280 ns and
1–45 ns, respectively.[11,12] Due to these differing characteristics,
the combination of TO, TPA, and FCD effects can result in self-
pulsing (SP) oscillations.[13,14] Here, a simple continuous wave
input signal, with a wavelength near the MRR’s resonance wave-
length, is transformed into an oscillating output due to the non-
linear and oscillatory resonance frequency shift.[13,14] Notably, by
arranging multiple silicon MRRs in series, a diverse range of dy-
namic SP responses, including chaotic ones, can be achieved by
varying the input laser power and wavelength.[15]
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Building on these effects, prior studies have demonstrated the
potential of silicon MRRs as energy-efficient artificial spiking
neurons with a minimal chip footprint.[16–21] Furthermore, sil-
icon MRRs have been extensively utilized in the broader field
of neuromorphic computing.[22] In recent experiments, we have
shown that it is feasible to directly connect multiple MRRs to-
gether, creating relatively large and scalable neural networks on
a photonic chip.[23,24] Moreover, we have recently demonstrated
that small networks of up to 3 coupled silicon MRRs can host
complex SP dynamics and multi-stability, enabling the storage
of input information for much longer durations (at least 10 μs)
compared to what silicon nonlinear effects intrinsically allow.[25]

In this work, we exploit this long-term memory effect in a larger
network of 64 coupled silicon MRRs for hardware-based machine
learning (ML). Input information, specifically single pulse timing
and pulse train rate, is retrieved by a linear regressor or classifier
by reading the photonic network output long after it has been fed
with the input signal.

This ML approach can be considered as a special case of
hardware-based reservoir computing (RC).[26] However, in its
original definition RC works with fading memory, while for the
tasks we consider in this paper, we exploit the non-fading mem-
ory of our MRRs network. The RC method essentially involves
the use of a recurrent neural network (or a non-linear dynami-
cal system in general), called a reservoir. The parameters of this
reservoir are not trained; instead, they are kept fixed after a ran-
dom initialization.[27] The only trainable part is a readout lin-
ear regressor or classifier, which is applied to some of the reser-
voir neurons (or states in general). The function of the reservoir
is to provide memory and expand the dimensionality of the in-
put signal, greatly enhancing the computational power of the
trainable linear readout. Although it may not be as computation-
ally powerful as fully trained recurrent neural networks or trans-
formers, RC is particularly attractive due to its simple and fast
training process. Most importantly, in the context of this work,
it is hardware-friendly. In fact, any sufficiently complex dynam-
ical physical system, such as a bucket of water,[28] can in prin-
ciple be used as a reservoir, since there is no need to control or
fully observe its internal dynamics for training. This advantage
makes hardware-based RC a popular neuromorphic computing
approach,[29,30] which is especially suitable for edge computing.

Inspired by the works summarized in Figure 1, in this paper,
we experimentally demonstrate a fully passive all-optical reser-
voir with non-fading memory. This reservoir can be read out af-
ter a relatively long period (at least tens of microseconds) follow-
ing its input excitation to perform signal processing and detec-
tion. This capability is based on the sensitive yet stable dynamical
states and multistability hosted by our photonic network, which
can be altered by an input signal, allowing the information to be
stored.[25] Importantly, this long term memory effect can be used
to match the effective timescale of RC operations with the input
signal timescale, which is in general a critical and complex chal-
lenge of non-digital neuromorphic computing[31] and of physical
RC in particular.[32] For example, widespread optical sensing ap-
plications such as fiber sensing,[33] typically work within much
slower timescales (milliseconds or slower) than those of photonic
networks (microseconds or faster). Our work provides a novel
path to bridge this gap and achieve energy efficient all-optical
preprocessing for photonic smart sensing applications. Further

advantages of our integrated photonic reservoir are: small foot-
print (0.15 mm2), relatively low power consumption (from few to
few tens of mW), no need of external connections or wiring as
it can be reconfigured by changing the excitation wavelength or
power at its input, simple fabrication, multi-wavelength capabil-
ity enabling network dimension expansion and/or parallel com-
puting. Moreover, we previously showed that similar MRR-based
networks can be employed to tackle relatively complex ML tasks,
such as handwritten digits classification.[24,34] Finally, it should
be stressed that our implementation was inspired by a simula-
tion work published a decade ago,[35] which first proposed using
a matrix of coupled MRRs driven in the nonlinear regime for RC.

The rest of the article is organized as follows. In the Results
section, we first present the principle of operation for the pro-
posed photonic RC with non-fading memory (Section 2.1). Sec-
ondly, we describe the input waveforms used for the measure-
ments and the considered ML tasks (Figure 2.2). Then, we dis-
cuss the obtained ML performances (Section 2.3). Following that,
we present our conclusions. Finally, in the Experimental Section,
we describe further technical details.

2. Results

2.1. Principle of Operation

Our neuromorphic hardware consists of a 8 × 8 matrix of silicon
MRRs, with a relatively low quality (Q) factor of about 6500. The
64 MRRs are coupled in an add-drop configuration by straight sil-
icon waveguides. These Q factors, while providing a low field en-
hancement for nonlinear operations, allow coupling statistically
more MRRs for a given input laser wavelength. In fact, a low Q
factor implies a broad MRR resonance, more light that is trans-
mitted or dropped and a low sensitivity of the resonance wave-
lengths to fabrication defects. We employed a grating coupler as
the input port (shown on the left of Figure 2a and used 6 grat-
ing couplers as output ports (shown on the right of Figure 2a.
The input signal consists of a modulated coherent light (wave-
length around 1550 nm) to generate a time-dependent input sig-
nal. Each MRR is resonant in a small wavelength interval (full
width at half maximum, FWHM≃0.24 nm). When not excited,
each MRR resonance is centered at different wavelengths, as they
are randomly displaced due to unavoidable fabrication inaccura-
cies (see examples at the top of Figure 2a, where the stored energy
versus wavelength is plotted for few MRRs). This means that each
fabricated network is unique and that it is not possible to predict
a MRR resonance wavelength before fabrication. However, once
the MRRs are manufactured, their resonances are stable in the
absence of strong optical excitation (linear regime) and if the chip
temperature remains relatively constant (we applied a thermo-
stat to the chip holder limiting fluctuations to less than 0.1 °C).
For intuitive insight, we can approximate the considered MRR re-
sponse as follows: if the light incoming through a straight waveg-
uide has a wavelength that is fully resonant, it is mostly redirected
by the ring to the other coupled straight waveguide, toward the
opposite direction w.r.t. the input. On the other hand, if the in-
coming light is not resonant, it mostly travels through the straight
waveguide as if no MRR was there; in in-between cases, the input
light is split among the two output directions, with proportions
depending on how close the input light is to resonance. For more
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Figure 1. Relevant previous works. Here we summarize previous works that inspired this research, with a short description and a sketch about the most
relevant content. We divide these works into three groups, corresponding to three ways of considering nonlinear MRRs for neuromorphic computing.

in-depth details about the MRR theory, we refer the reader to the
relevant literature.[6,22]

High enough input power levels (typically on the order of milli-
watts or higher) drive a resonant MRR into the nonlinear regime
(see Figure 2a, top inset). In this case, the MRR resonance is not
fixed anymore but shifted in wavelength by the nonlinear silicon
effects. In our network, a sufficiently powerful constant input can
induce nonlinear dynamics involving several rings, causing com-
plex time-dependent responses at the output ports (see exemplary
input and output waveforms in Figure 2a, and in Figure S1 and
S2 in the Supporting Information). Importantly, the output sig-
nals are strongly dependent on the input power, wavelength, and
output port, allowing the generation of a great variety of dynam-
ical responses. These can be explored to find the most suitable
ones for a target computational task. Indeed, this is the approach
we employ in this work.

In particular, we focus on a specific way to excite and use the
network response (here referred to as measurement), to demon-
strate a photonic reservoir with long-term and non-fading mem-
ory. Each performed measurement can be divided in three consec-
utive steps (with reference to Figure 2b):

Step 1: Start of nonlinear (NL) stage. The input power (red
line in Figure 2b) is quickly increased from a low
level (linear regime) to a constant high level to drive
the network in the nonlinear regime in the net-
work. The role of this stage is to sustain the non-
linear regime and/or SP dynamics in the photonic
network.

Step 2: Perturbation insertion. A time-dependent perturbation
(either a single pulse or a pulse train), whose duration
is much shorter than the NL stage duration, is added to
the constant input optical power of the ongoing NL stage.

Step 3: Readout after end of input perturbation. Well after the in-
put perturbation has ended and right before the end of
the NL stage, the output signal is sampled (we name the
sampling time interval the readout interval). These val-
ues are fed into the ML linear readout, which is trained
to infer the perturbation information from the network
response.

Step 4: End of NL stage. After the readout, the NL stage ends with
a quick drop of the input power. This leaves the network
in the linear regime for a long enough time to reset its
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Figure 2. Working principles of photonic RC with non-fading memory. a) Our reservoir (schematics at the center) consists of a network of coupled
silicon MRRs, whose resonance is centered at different wavelengths due to fabrication errors (see plots on the top, showing MRR stored energy versus
wavelength for few MRRs). Moreover, if the input laser power is high enough (milliwatts), the resonance wavelength of the excited MRRs is shifted
because of silicon nonlinear effects (due to the free carriers and temperature) and can give rise to multistability and complex network dynamics due
to the coupled dynamics of multiple MRRs. The reservoir is fed by an input signal (example on the left, blue line), which is coupled to the input
grating (triangle), and produces different outputs (example on the right, blue lines), which are collected by the various output ports via output gratings.
b) Measurement steps. At first, Step 1, the input power (left, red line) is increased to drive the network into a nonlinear regime, e.g., a self-pulsing (SP)
response (right, blue line). Then, Step 2, a perturbation (a single pulse or a pulse train) is added to the constant input. The perturbation can alter the
network dynamics in a non-fading way, as shown in the example output lineshape on the right. Finally, Step 3, a linear readout is trained to infer some
perturbation properties from the network response long after the perturbation has ended. The input power, Step 4 - not shown, is then lowered to reset
the network state.

memory (given by the free carriers and the temperature
variation in the MRRs).

The rationale for this procedure is that the input perturba-
tion signal affects the static or dynamic equilibrium of the non-
linear states (based on optical power, free carriers and tempera-

ture in the ring waveguides) of the coupled MRRs. The effects
of this perturbation on the network states can be non-fading, if
the equilibrium or quasi-equilibrium states are changed by the
perturbation. As we mentioned in the introduction, in our pre-
vious work we have demonstrated this long-term memory ef-
fect in a few coupled MRRs,[25] which can be based either on
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Figure 3. Self-pulsing frequency as a function of laser frequency and power. a) Color-maps of the SP frequency (i.e., inverse of the fundamental period
of the SP waveform) at the different output ports. Ten different markers on the maps (see the legends below the maps) indicate the input parameter
combinations that optimize the performance of a specific ML task (described in Sections 2.2 and 2.3). In the legend, “t.s.” and “r.b.” respectively stand
for “timescale” and “random beginning” of perturbation. b) The left plot shows the transmission spectrum of the reservoir in the linear regime measured
at output power 1, with dotted vertical lines indicating the spectral window where the SP frequency maps were measured. The middle and right plots
display two examples of SP output waveforms measured at port 9 and port 5, respectively, for the set of parameters represented by the symbol on the
top of the panel. A fit with a sinusoidal lineshape (dotted red line) allows to estimate the fundamental SP frequency reported in the color-maps.

multistability or on self-pulsing dynamics of the network states.
Visual examples about how the input perturbation can modify the
network response in a non-fading way are shown in Section S2
(Supporting Information). In this work, we show that we can use
a simple ML model (corresponding to the RC linear readout) to
retrieve the perturbation information from our photonic network
output in the altered (quasi-)equilibrium state.

As we explain later in more details, in this work we consider
two different perturbation types (single pulse and pulse train),
two different NL stages and perturbation timescales, and two dif-
ferent types of ML methods (linear regression and classification
using logistic regression). For each of these cases, we tackle two
different problems: inference on the timing of a single pulse and
inference on the spike rate of a train of pulses. In this paper, each
combination of these elements is referred to as a ML task.

Importantly, for each ML task, we repeated a corresponding
measurement for:

• 19 different input optical frequencies that are resonant with
some MRRs in the network. We used frequencies from
192.68 THz to 192.86 THz, with steps of 0.01 THz. Moreover,

an additional non-resonant frequency (namely 192.60 THz)
was employed as a reference. It corresponds to the case where
the input signal is directly transmitted to the output without
resonating in any MRRs. We used this reference measurement
as a baseline to estimate the performance improvement due to
the reservoir, that is, the MRRs array.

• 20 different input optical power levels, namely with an esti-
mated average on-chip power from ≃ 5.5 mW to ≃ 16.4 mW,
with steps of ≃ 0.57 mW. For the baseline, we used only the
maximum power level, in order to maximize the signal-to-
noise ratio.

Therefore, we performed a total of 380 measurements per task,
plus one reference measurement with a non-resonant laser fre-
quency. It should be stressed that, in most of these measure-
ments, the NL stage drove the network into a dynamical state
due to the coupled SP of the involved MRRs. This can be ob-
served in Figure 3a, where 2D color maps show the estimated
SP output frequencies for the different output ports. We observe
a diverse range of SP responses, with SP frequencies ranging
from about 9.4 kHz to 1.6 MHz. These maps provide valuable
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insights into the timescales of the network dynamics. Moreover,
in Figure 3a we marked the combinations of laser frequency and
power that optimize the performances of the ML tasks. These
are discussed in the next sections. Looking at the SP maps, we
can already see that different combinations of input parameters
optimize different tasks, demonstrating the versatility of our RC
implementation.

Finally, in Figure 3b left plot, we show a transmission spectrum
of our photonic reservoir in the linear regime, measured at out-
put port 1. It can be seen that the single MRRs resonances overlap
in a large structured resonance band, roughly from 192.62 THz
to 192.88 THz. The detailed analysis of the various contribu-
tions to this transmission lineshape is beyond the scope of this
work.[15] The dotted vertical lines show the laser frequency range
employed for our measurements. The out-of-resonance baseline
measurement has an input frequency located at the beginning of
the drawn spectrum. Two examples of the output waveforms due
to the complex SP dynamics are shown on the right in Figure 3b.
(More example output waveforms are showed in Section S1, Sup-
porting Information.) A fit of these waveforms with a sinusoidal
waveform (dotted lines in Figure 3b) yields the SP frequencies
reported in the SP maps, where we also marked with magenta
asterisk those cases where the SP dynamics did not present a well
defined period in the analyzed time interval. Moreover, it should
be noted that the SP dynamics can be significantly faster than the
SP frequency, leading to complex periodic patterns.

It should be stressed that the exploitation of optical non-fading
memory for our RC system is in practice not very different w.r.t.
the conventional fading memory case, if such a memory effect
is reset before each ML inference, as it is done in this work.
However, non-fading memory allows to accumulate relevant in-
formation over a longer time, which can be flexibly programmed
by means of memory resetting. On the other hand, in practice
there is a limit to how long information can be memorized, since
the detrimental effect of experimental noise can accumulate over
time and destroy stored information.

2.2. Input Waveforms and ML Tasks

In this work, we mainly performed 5 measurement sessions
(each comprising the aforementioned 381 measurements with
varying input frequency and power) distinguished by different in-
put optical waveforms employed to excite our photonic network
(see Figure 4), each being a sequence of NL stages (see Machine
Learning Aspects Section for further details):

1. Single-spike perturbation for spike timing inference: the NL
stages are perturbed by a single pulse. This can have 50 dif-
ferent timings w.r.t. the NL stage beginning.
(a) Short timescale version (Figure 4a): the NL stage is 20 μs

long and the perturbing pulse duration is 60 ns. 50 spike
timings from 0 to 9.8 μs, with a time step of 0.2 μs, were
used.

(b) Long timescale version (Figure 4b): the NL stage is 100 μs
long and the perturbing pulse duration is 200 ns. The 50
spike timings range from 10 μs to 19.8 μs, with time steps
of 0.2 μs.

2. Spike train perturbation for spike rate inference: the NL stage
is perturbed by a sequence of 20 equidistant pulses. We con-
sider 20 different spike rate values.
(a) Short timescale version (Figure 4c): the pulse duration is of

60 ns. In the maximum spike rate case, the pulses are sep-
arated by 20 ns and the pulse train is 1.58 μs long, starting
always 10 μs after the start of the NL stage. In the mini-
mum spike rate case, the pulses are separated by 201 ns
and the pulse train is 5.019 μs long.

(b) Long timescale version (Figure 4d): the pulse duration is
200 ns. In the maximum spike rate case, the pulses are
separated by 100 ns and the pulse train is 5.9 μs long, start-
ing always 10 μs after the start of the NL stage. In the min-
imum spike rate case, the pulses are separated by 1050 ns
and the pulse train is 23.952 μs long.

(c) Long timescale with random perturbation start: in contrast
with the previous two cases, in this measurement session
the pulse train starts at random times w.r.t. the start of the
NL stage, ranging from 10 μs to 30 μs. The other parame-
ters are equal to the long-timescale case.

A ML dataset is created for each measurement (thus obtain-
ing 381 datasets per measurement session), by extracting a small
final part of the NL stages from the network response at each
output port. In particular, for the short and long timescale cases,
we considered of each NL stage the last 1.28 μs (400 oscilloscope
samples) and the last 5.12 μs (1600 oscilloscope samples) respec-
tively. Note that these traces are downsampled before they are fed
to the linear readout (the best among 4 downsampling ratios is
chosen, see Machine Learning Aspects Section for details). In ad-
dition, to generate a ML dataset that better covers the variations
due to measurement noise and random parameters, each mea-
surement comprises different repetitions of NL stages with the
same nominal parameter values. More details are provided in the
Experimental Section (Machine Learning Aspects).

Each obtained ML dataset is employed to train the following
ML linear readout models, for the following ML tasks (all with
optimized L2 regularization):

1. Linear regression.
(a) For spike timing regression: the linear readout is trained to

return the timing of the single perturbing pulse.
(b) For spike rate regression: the linear readout is trained to re-

turn the rate of the perturbing pulse train.
2. Classification (2-classes, logistic regression).

(a) For spike timing classification: the readout is trained to dis-
tinguish between perturbations timings before and after a
certain timing threshold. In order to make the evaluation
of this task more general, we repeated training and test-
ing using 4 different timing thresholds, roughly situated
at 1/5, 2/5, 3/5 and 4/5 of the employed timing values,
and we averaged the obtained performances.

(b) For spike rate classification: the readout is trained to distin-
guish between spike rates below and above a certain rate
threshold. As in the previous case, we repeated training
and testing using 4 different rate thresholds, roughly sit-
uated at 1/5, 2/5, 3/5 and 4/5 of the employed rate values.
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Figure 4. Input waveform types, corresponding to different ML tasks. a) Example input waveform segment where the NL stages are perturbed by a single
pulse at different timings w.r.t. the NL stage start. (The unperturbed NL stage in the middle was employed as reference and can be ignored.) We marked
with a red horizontal bar the short NL stage interval whose corresponding network response is fed into the trainable linear readout. b) Similar to a, but
with longer timescale. c) Example input waveform segment (top) where the NL stages are perturbed by a sequence of 20 pulses, always starting at the
same time w.r.t. the NL stage start, but with different pulse rates. The plots below respectively show the detail of the perturbation with highest and lowest
spike rates. d) Similar to c, but with longer timescale.

We consider linear regression problems to be more challeng-
ing than classification problems. Linear regression aims to as-
sociate different continuous values with each instance, rather
than simply grouping them into two classes, while using the
same number of trainable readout weights. We believe that lin-
ear regression provides general insights and elements on the
suitability of our reservoir for solving the tasks at hand. In
contrast, classification performance (accuracy, in this work) of-
fers a more practical and quantitative measure of how well our

RC system groups input perturbations based on their relevant
properties.

In order to provide further insight on the practical applicability
of the proposed neuromorphic computing framework, we inves-
tigate different ML task variations. For the linear regression prob-
lem, we evaluate two variations:

1. Seen test samples: the RC system is evaluated on the abil-
ity to retrieve input information memorized in the network

Adv. Optical Mater. 2025, 2403133 2403133 (7 of 12) © 2025 The Author(s). Advanced Optical Materials published by Wiley-VCH GmbH
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states and to generalize to different values of experimental
noise rather than to unseen samples. Specifically, the training
and the test sets may share samples with the same nominal
spike timing or rate. Since the same nominal perturbation is
repeated, these samples differ only because of experimental
noise. In practical applications, this evaluates the ability to in-
fer properties of a known set of inputs.

2. Unseen test samples: the RC system is evaluated on its ability
to generalize to unknown. Specifically, the test samples corre-
spond to spike timings or rates that were unseen during the
training procedure.

For the classification problem, we evaluate three variations:

1. Single configuration for all thresholds: all four binary classifi-
cations with different threshold are tackled by a single config-
uration of input wavelength and power at a time. The average
classification accuracy obtained evaluates the ability of a sin-
gle network input configuration to perform well for all four
thresholds.

2. 1 feature per port: this is a special case of the previous case,
where the readout classifier is applied on only one value (or
feature) per output port. Each one of the six features is ob-
tained by averaging the readout over time, thus eliminating
the time dependency in the used readout samples. Clearly,
this variation is more challenging than the previous one, since
the readout classifier has less available information. However,
in practice, this variation relaxes the requirement on the speed
of the photodetector and oscilloscope at the network output
(less than 1 MHz bandwidth is required), as the readout inter-
val does not have to be temporally resolved.

3. Multi-configuration: for each threshold, we consider the best
input configuration and then average the obtained accuracies.
By allowing different input configurations to solve the binary
classification, we can evaluate the best possible average accu-
racy achievable with the measured configurations.

2.3. ML Results

We present in Figure 5 the best performance of our RC system
on the different ML tasks. Optimum configurations (input wave-
length and power) are shown by various symbols in the SP maps
of Figure 3. To evaluate the performance of linear regression, we
provide the coefficient of determination of the prediction (referred
to as regression score in the plots), defined as one minus the ra-
tio of the residual sum of squares to the total sum of squares (as
implemented in the employed Ridge function of the Scikit-learn
Python library[36]). In order to provide some intuitive insight into
this performance measure, we first show some examples of the
predictions of the linear regression test versus the actual ML tar-
gets (Figure 5a). These examples are matched by gray arrows to
their score values in Figure 5b,c.

Our RC system could perform spike timing regression quite well
in the short timescale case (Figure 5b). Importantly, the corre-
sponding baseline score (obtained from the aforementioned out-
of-resonance measurement) is close to zero. This indicates that
the obtained high score is solely due to the ability of our photonic
reservoir to store and represent the input information through

its multistability or SP dynamics. In the longer timescale case,
although still satisfyingly high, the regression score is reduced.
Nevertheless, from this result we conclude that the spike timing
information was stored in the photonic network state for at least
75 μs.

The spike rate regression is also performed well in the short
timescale case (Figure 5c). We observe only a slight decrease in
performance when the RC system was asked to generalize over
unseen spike rates. In the long timescale case, even if the score
is rather high for the seen test samples case, the baseline score
reaches 0.45, which is significantly larger than zero. Indeed, from
the corresponding inference plot at the top, we can see that the
linear readout can extract some information about the spike rate
from the input signal (i.e., without the reservoir). This is due to
the non-ideality of the optical modulator employed to generate
the input waveforms. Indeed, in Figure 4d, it is possible to see
that the pulse train perturbs the following NL stage power level.
This introduces an unwanted memory effect that is exploited by
the linear regression. Moreover, this relatively high baseline score
also tells us that, if a simple memory effect such as the one intro-
duced by the modulator can provide some non-negligible perfor-
mance improvement, it might be that this task is not very chal-
lenging in computational terms. Indeed, considering that the per-
turbation with the lowest rate is more than four times longer
than the one with the highest rate, the regression problem can
be solved by directly looking at when the pulse train ends rather
than at the actual spike rate. In order to remove this alternative
and supposedly easier way to solve the regression, we have con-
sidered a more complex version of the problem, where the per-
turbation begins at random times between 10 μs and 30 μs w.r.t.
the NL stage start (referred to as long timescale with random per-
turbation start in Section 2.2 and as long RB in the x-axis labels of
the bar plots in Figure 5c,e). In this case, the regression score is
not very high (0.85 and 0.83 for the seen and unseen test samples
cases, respectively). However, we successfully lower the baseline
score to values close enough to the zero. Therefore, we conclude
that the readout can extract the spike rate information from the
reservoir state after at least 40 μs, even if with reduced perfor-
mance. Regarding the sensitivity of coupled MRRs to spike rates,
it is important to note that we have previously demonstrated non-
fading SP dynamics switching due to low spike rates in a system
of three coupled MRRs, independent of the pulse train duration,
in our earlier work.[25]

The spike timing classification achieves accuracies close to 100%
on both short and long timescales. These results significantly out-
perform the baseline accuracies of approximately 50%, which is
the expected value for random guessing in binary classification.
Consequently, we conclude that our RC system is effective in dis-
tinguishing early from late perturbations relative to a given time
threshold by analyzing the reservoir response at least 75 μs after
the perturbation ends. Notably, in the short timescale scenario, a
high classification accuracy of 96.9% is achieved by reading only
one value per output port, i.e., by averaging the network response
over the readout time interval. This result is likely due in part to
some fading memory that is not present in the long timescale
scenario, where a significantly lower accuracy is observed.

The spike rate classification also exhibits high accuracy in the
short timescale case and a high baseline classification accu-
racy (75.5%). Again, by imposing a random start time to the

Adv. Optical Mater. 2025, 2403133 2403133 (8 of 12) © 2025 The Author(s). Advanced Optical Materials published by Wiley-VCH GmbH
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Figure 5. ML performances. a) Examples of the linear regression test prediction (light-blue dots) versus the actual ML target (orange lines). These
examples correspond to the score values displayed in the bar plots of b or c, as indicated by gray arrows. b–e) Bar plots of the best performances
obtained by selecting the best input wavelength and power combinations, for each ML task and corresponding variations as described in Section 2.2
and used here to label each set of columns. The best input parameters, which best solve each ML task, are indicated by various symbols in the SP maps
of Figure 3. In (b,c) the orange columns refer to test score while the blue columns to the baseline. In (c,d) the blue, orange and green columns refer
respectively to the single configuration, the multi-configuration and the 1 feature per port task variations as discussed in Section 2.2. The error bars in the
regression tasks represent twice the standard deviation of the accuracies obtained for the different cross-validation folds, i.e., different ways of splitting
the data into training and test datasets. The error bars in the classification tasks represent twice the standard deviation of the accuracy estimates for the
4 two-class binary problems, each requiring sample separation by a different threshold value.

perturbing pulse trains, we lower the baseline classification accu-
racy to an acceptable level (60.4%) and, concurrently, we improve
the ability of the RC system to classify actual spike rates, rather
than perturbation timings. This task is carried out with a satisfy-
ing best average accuracy of 93.6%, by reading out the reservoir
response after at least 40 μs since the NL stage beginning.

Furthermore, in Section S3 (Supporting Information) we
show the full colormaps of the classification performance (for
different ML tasks) as a function of input laser power and
frequency.

3. Conclusion

In this study, we present a first experimental demonstration of
physical reservoir computing with all-optical non-fading mem-
ory, utilizing a passive network of silicon microring resonators
as the photonic reservoir. This reservoir retains and processes in-
formation about its input excitation for an extended duration of
at least several tens of microseconds. This capability is due to
the sensitive yet stable dynamics and multistability of the 64 cou-
pled silicon microresonators, which can be perturbed by an input

Adv. Optical Mater. 2025, 2403133 2403133 (9 of 12) © 2025 The Author(s). Advanced Optical Materials published by Wiley-VCH GmbH
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Figure 6. Experimental setup. a) Laser light (wavelength around 1550 nm) is modulated into the desired waveform and injected into the on-chip photonic
network. The input wavelength is selected by using a tunable continuous wave laser, while the input power is set via a variable optical attenuator. Before
the photonic chip, we placed a 99–1% splitter, so that we could read out the 1% port with photodetector 1, allowing us to monitor the average input
power. Finally, the photonic network output is read out by photodetector 2. Red lines refer to the optical signal path, while the gray lines to the Rf signal
path. b) Microscope image of the measured MRR network.

signal in a non-fading manner. Crucially, this long-term mem-
ory effect can be leveraged to align the effective timescale of our
physical neural network with that of the input signal, address-
ing a key challenge in neuromorphic computing and in reser-
voir computing. Additionally, our integrated photonic reservoir
offers several benefits: a compact size (0.15 mm2), relatively low
power consumption (ranging from a few to tens mW), reconfig-
urability by altering the input’s excitation wavelength or power
without requiring external wiring, ease of fabrication, and multi-
wavelength operations that enable network expansion and/or
parallel processing.

We demonstrated that the proposed reservoir computing sys-
tem can handle both regression and classification tasks related
to the timing of an input single pulse and the spike rate of an
input spike train, across two different timescales (with approx-
imately a fivefold difference). The first task is particularly rel-
evant in distributed optical fiber sensing, where different opti-
cal pulse timings correspond to different perturbation locations
along the fiber sensor. Additionally, encoding information into
spike timing or spike rate are two primary methods for operating
spiking neural networks. Therefore, our dynamic photonic net-
work shows potential as an all-optical interface for reconfigurable
and energy-efficient decoding or processing of photonic spiking
processors or sensors. Overall, our work presents a practical and
versatile new approach to extending memory in photonic reser-
voir computing, making it applicable to sensor signals with much
slower timescales.

4. Experimental Section
Experimental Setup and Photonic Integrated Circuit: A standard pho-

tonic setup was used to inject and collect an optical signal via a
photonic integrated circuit (PIC) with a bandwidth of approximately
500 MHz (see schematics in Figure 6). The input optical signal was
generated by a fiber-coupled continuous-wave tunable laser (Pure Pho-
tonics) operating at the C-band and modulated by an electro-optic
modulator (EOM, iXblue model MXAN-LN-10) driven by an arbi-
trary waveform generator (AWG, Spectrum model DN2.663-02). The
amplitude-modulated optical signal was then amplified by an erbium-
doped fiber amplifier (EDFA, Thorlabs) and attenuated to the de-
sired power level via an electronic variable optical attenuator (VOA).
A polarization control stage fixed the proper (TE, transverse electric)
polarization.

Then, a 1% fiber tap coupled to a slow photodetector (PD, 30 kHz
bandwidth, New Focus model M2033) monitored the average input optical
power. The other 99% signal was injected into the PIC through a cleaved
fiber placed on a three-axis linear piezoelectric stage. The PIC transmission
was collected by another cleaved optical fiber, interfaced through another
VOA, to a fast PD (600 MHz, Menlosystem model FPD610-FC-NIR). This
second VOA protected the fast PD from exceedingly high optical power.
The electrical signals from the two PDs were read by an oscilloscope (Pico-
scope model 6000) and stored in a computer, which also controlled the in-
strumentation. Note that the chip temperature was stabilized by a thermo-
stat system, whose temperature was controlled by a proportional-integral-
derivative controller connected to a Peltier cell and a 10 kΩ thermistor.

The PIC is composed by a MRRs array based on silicon-on-insulator
waveguides with a silicon core cross-section of 450 nm × 220 nm, embed-
ded in a silica cladding. The propagation loss of the waveguides is around
1.4 dB/cm. Moreover, the actual waveguide width presents a standard de-
viation of around 9 nm due to fabrication variability. The MRRs have a race-
track shape with a bend radius of 7 μm and straight coupling sections of
0.71 μm. The gap between the bus waveguides and the MRR waveguide
is 0.2 μm long. The distance between the centers of adjacent MRRs on
the same line is 22.7 μm, while MRRs on adjacent lines are horizontally
displaced by 11.35 μm (see Figure 2). The range of MRR resonance wave-
length variation due to fabrication errors is around 6 times the full width
at half maximum of the MRR resonance. The PIC was fabricated by IMEC
(Leuven, Belgium).

As we explained in the beginning of Section 2.1, the Q factor of the em-
ployed MRRs is around 6500. We did not perform the measurements here
described using other networks with different MRR Q factors or topolo-
gies. Therefore, it is likely that the RC performances could be improved
by exploring these design parameters. While this could be an interesting
subject for further study, we would like to stress that the network design
and the proposed RC implementations present an exceedingly large num-
ber of degrees of freedom that could be potentially varied. In this work we
focused on exploring the ones that we deemed most important (such as
input laser power and frequency, timescale, ML tasks variations), based on
our intuition and experience. As we expected, thanks to the high versatil-
ity of the hardware-based RC approach, our photonic hardware performed
satisfactorily without an optimization of the network design parameters.
The PIC area, however, could be significantly reduced just by employing
MRRs with a smaller radius, especially since high Q factors are not needed
in this case (MRRs with radius down to only 1.5 μm are feasible, with a Q
factor of 9000[37]).

The employed average on-chip optical power, reported in Section 2.1,
was obtained by measuring the average optical power at the photodetec-
tor placed before the PIC (photodetector 1 in Figure 6), and by considering
the 1% transmission of the splitter before the PIC and a grating coupler
power loss of around 3 dB (which we previously measured). It should be
stressed that the employed optical power levels were required to excite
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suitable nonlinear dynamics of the MRR network, rather than having a
readable network output. Our PIC did not consume any additional energy.
The difference between the input and output optical power of the PIC was
strongly dependent on the input laser parameters and on the employed
output port. For example, input laser light that do not resonate with any
MRR, has a negligible loss on the first output port (without considering
the overall grating couplers loss, estimated to be around 6 dB, which can
be further decreased by employing a more efficient coupling approach to
the PIC, e.g., via edge couplers). It was expected that the PIC power con-
sumption could be significantly reduced by employing a larger number of
MRRs per row, with larger Q factor.

Machine Learning Aspects: For the single pulse timing infer-
ence ML task (with reference to Section 2.2), the response of the
photonic reservoir was measured to 5 or 6 repetitions (depending
on how many fit our acquisition time window) of the input signal.
The input signal was composed by 10 repetitions of a randomly
ordered sequence of 50 NL stages, each with different perturba-
tion pulse timings. Thus, for each measurement and ML task,
2500 or 3000 samples were acquired and processed. Here, the im-
portance of randomizing the order of samples was stressed with
respect to the label values to avoid shortcut learning due to cor-
relation between labels and drifts in experimental conditions.[38]

A similar input scheme is employed for the spike rate inference
(in this case, 20 different spike rates, i.e., 1000 or 1200 samples).

The spike rate inference ML task with random perturbation be-
ginning is intrinsically more complex than the others. This is due
to the use of randomness in the beginning time as an additional
degree of freedom. Therefore, in this case, a larger number of ML
samples were needed and thus acquired the network response to
5 or 6 repetitions of the following input signal: 50 repetitions of
a randomly ordered sequence of 20 NL stages, each with a dif-
ferent pulse rate and start of the perturbation pulse train. Thus
obtained 5000 or 6000 samples. It should be added that the ML
processing was excluded from the first 5 samples (or NL stages)
at the start of each input repetition to avoid signal distortions by
the non-idealities in the modulator after long pauses.

The training of the linear readout in the RC system was
done with the Scikit-learn Python library,[36] specifically the Ridge
and Logistic Regression functions for linear regression and lin-
ear classification, respectively. Moreover, we used the following
pipeline:

1. Downsample the readout waveforms, which are the network
responses recorded during the readout intervals. The sig-
nal.decimate function was used from the SciPy Python library
with ratios of 400, 40, 20, and 10 for the short timescale cases,
and 1600, 160, 80, and 20 for the long timescale cases, re-
spectively. Consequently, for each measurement, four differ-
ent datasets were obtained, each corresponding to a different
downsampling ratio.

2. For each downsampling ratio value, initiate the outer five-
fold cross-validation loop, where the training and test datasets
are separated. The features were also standardized using the
feature averages and standard deviations calculated from the
training set.

3. Select the best L2 normalization strength in the inner cross-
validation loop from 8 values, ranging from 10−8 to 10−1, us-
ing factor 10 steps.

4. With optimized regularization strength, train and test the ML
model, closing the outer cross-validation loop.

It is important to emphasize that for each ML task, this ML
pipeline was repeated for every combination of downsampling
ratio, input wavelength, and input power. The test scores pre-
sented in Figure 5 represent the best results selected from this
parameter space.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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