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Abstract—Programmable photonic integrated circuits (PPICs)
are an emerging technology recently proposed as an alternative to
custom-designed application-specific integrated photonics. Light
routing is one of the most important functions that need to be
realized on a PPIC. Previous literature has investigated the light
routing problem from an algorithmic or experimental perspective,
e.g., adopting graph theory to route an optical signal. In this paper,
we also focus on the light routing problem, but from a complemen-
tary and theoretical perspective, to answer questions about what
is possible to be routed. Specifically, we demonstrate that not all
path lengths (defined as the number of tunable basic units that an
optical signal traverses) can be realized on a square-mesh PPIC,
and a rigorous realizability condition is proposed and proved. We
further consider multi-path routing, where we provide an analyt-
ical expression on path length sum, upper bounds on path length
mean/variance, and the maximum number of realizable paths. All
of our conclusions are proven mathematically. Illustrative potential
optical applications using our observations are also presented at the
end.

Index Terms—Programmable photonic integrated circuits,
routing analysis.

I. INTRODUCTION

OVER the past two decades, photonic integrated circuits
(PICs) have been demonstrated in a growing number of

applications and fields, such as data communications, quantum
computing, and optical beam-steering [1], [2], [3], [4], [5], [6].
Usually, a PIC is designed for one particular application, which
is commonly referred to as application-specific. For every new
application, engineers must design and fabricate a new photonic
circuit from scratch. Depending on the technology, this cycle
can take one year or more. Recently, programmable photonic
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integrated circuits (PPICs) [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19] have emerged as an alternative
paradigm, exploiting reconfigurability to avoid the redesign
workload. Specifically, a PPIC is made up of a mesh of so-called
tunable basic units (TBUs), and each TBU has two actively
controlled optical tuners (e.g., electro-optic phase shifters). By
tuning these individual actuators, the flow of light in a PPIC
can be reconfigured to realize various linear light processing
functions, such as splitting, interfering, routing, and filtering [8],
[11], [12].

Depending on the connectivity of these TBUs, a PPIC can
be categorized into two types: feed-forward and loop-back (re-
circulating) topologies [10], [15]. Some special feed-forward
topologies [20], [21] have been proven capable of realizing any
unitary transformations, and thus have become popular as an
acceleration engine to implement matrix-vector multiplications
for optical neural networks [2]. On the other hand, loop-back
topologies [11] have the ability to redirect light in any direction
in the circuit, and implement tunable delay lines, interferometric
filters, and ring resonators. They are more versatile and can be
useful in more optical applications compared to feed-forward
topologies. The most common configurations of a loop-back
PPIC are a triangular, square, or hexagonal mesh [8], [10], and
these are also the main focus in our paper.

One of the most important functions for a PPIC to realize is
light routing. Some earlier published papers [14], [22] model
a PPIC using a directed/undirected graph, and solve the rout-
ing problem using existing graph algorithms. These efforts are
oriented towards answering the question of how to route, while
in our paper, we study (and answer) a series of complementary
questions related to what can be routed or not. Our analysis is
performed based on the metric of path length, which is defined
as the number of TBUs in the optical path [22]. When an optical
signal traverses through a PPIC, its phase change and time delay
is closely related to its path length. Thus, investigating path
length will provide us a good understanding of the routing ability
of PPICs and will be instructive in many optical applications. As
an example, if a PPIC can route at most y (e.g., y = 5) optical
signals such that their path lengths are all equal, then this indi-
cates that at mosty optical signals can go through this PPIC while
maintaining their relative phase differences. Such a conclusion
is of crucial interest in a phase sensitive optical application. An
immediate question is: What is the maximum value of y for a
given PPIC? Our paper focuses on answering such questions.
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Fig. 1. (a) Undirected simple graph representation of anN ×M square-mesh
PPIC when all TBUs are in bar state. The green and orange dots represent floating
and non-floating nodes, respectively. (b) An example of a 2× 2 square mesh
when all TBUs are in bar state. Purple and pink rectangles represent horizontal
and vertical TBUs, respectively. (c) The optical path marked by the solid red line
has length 4; path segments not involved in this path are marked with dashed
lines. In this mesh configuration, the four TBUs in the path of interest are in
cross state, and the other TBUs are in bar state.

All of our findings will be supported by mathematical proofs.
Finally, a number of illustrative potential optical applications
using our observations are explored.

The paper is organized as follows. In Section II, we briefly
review the compact model of the TBU, formally make several
definitions (such as floating node and path length), and describe
several axiomatic conclusions. Next, in Section III, we present
our major results about the routing ability of a general square
mesh, covering both the cases of single-path and multi-path
routing. In Section IV, we present a few applications inspired by
our findings. Finally, we conclude our paper with Section V. Our
main text only focuses on square meshes; analyses of triangular
and hexagonal meshes are considered in the Appendix.

II. PRELIMINARY

For this study, we focus on an N ×M square mesh (see
the Appendix for other mesh topologies), made up of TBUs
arranged along the horizontal and vertical edges, as shown in
Fig. 1(a)–1(b). The TBU can be implemented in different
ways [10], but the most common implementation is based on
variants of a 2× 2 Mach–Zehnder interferometer (MZI) [10],
[11]. In this paper, we consider the same TBU implementation
as in [15]. An MZI has two inputs and two outputs, and their
values are related by a transfer matrix. Specifically, the two
output optical signals equal the product of the following 2× 2
transfer matrix with the input optical signals:

F =
α

2

[
e−jθ − e−jφ −je−jθ − je−jφ

−je−jθ − je−jφ −e−jθ + e−jφ

]
e−jω

neffL
c (1)

where {θ, φ} are the active phase shifts of the TBU which are
tuned by electric signals, ω is the angular frequency of the
optical carrier wave, α represents the TBU loss, neff = neff(ω)
represents the effective index of the propagating mode in the
waveguides, c is the free space light speed, and L is the length
of the waveguide in the TBU. For a more in-depth exploration of

the transfer matrix and alternative forms, we recommend [10],
[18], [23], and [24].

There are two special cases of primary interest: (i) bar state:
θ = 0 and φ = π, and (ii) cross state: θ = φ = −0.5π. The
resulting F for these two cases are respectively shown below:

bar state: F =

[
1 0
0 −1

]
αe−jω

neffL
c

cross state: F =

[
0 1
1 0

]
αe−jω

neffL
c (2)

For a horizontal TBU in the bar state, an optical signal going in
from the top left port will be guided to its top right port (i.e.,
confined in the same arm). Alternatively, for that TBU in the
cross state, an optical signal going in from its top left port will
be guided to the bottom right port. When a square-mesh PPIC
is used merely to route light, all TBUs are either set to cross
state or bar state. Thus, following this convention, we assume
all TBUs are either in cross state or bar state in our paper, and no
partial coupling is allowed. Now, we formally define the graph
representation of a square-mesh PPIC, where the ports of the
TBUs are represented by nodes.

Definition 1: An N ×M square-mesh PPIC can be repre-
sented by an undirected simple graph, with parallel/cross line
segments for bar/cross state, respectively, as demonstrated in
Fig. 1(a) and 1(c).

We will respectively use N and M to represent the number of
rows and columns throughout our paper. We will use the format
TBUij−mn to refer to the TBU at the intersection of square cell
(i, j) and (m, n). To ease the mathematical description later,
we introduce two definitions, based on the concepts of ‘node
degree’ and ‘path’ in graph theory.

Definition 2: We define a floating node as a node with only
one edge connected to it (i.e., node degree equal to 1). Similarly,
a non-floating node refers to a node with at least two edges
connected to it (i.e., node degree no less than 2).

Definition 3: We define an undirected optical path as a path
both starting from and ending at a floating node. Path length is
defined as the number of edges (or equivalently, the number of
TBUs) that the path passes through.

Several things need to be clarified. First, in a square mesh,
a non-floating node can only have node degree equal to or
less than 2, but not larger than 2, because at most two edges
are connected to a node. Second, due to reciprocity of light
propagation in passive circuits, one undirected optical path
actually corresponds to two directed light paths. For instance, in
Fig. 1(c), we will use (A,B,C,D,E) to denote the undirected
optical path marked by red of length 4, while that path actu-
ally corresponds to two directed optical paths A → B → C →
D → E and E → D → C → B → A in potential applications.
Equivalently, (E,D,C,B,A) is another valid notation for this
undirected light path. However, (E,D,C,B,A) with start at
E and end at A, and (A,B,C,D,E) with start at A and end
at E, will be counted as one undirected light path instead of
two in our paper. Last, but not least, the metric path length is
closely related to the phase change of an optical signal when it
goes through a square mesh. Given an optical path of length l,
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Fig. 2. Four different example circuit configurations are shown for a 2×
1 square mesh. In each configuration, there are always six undirected paths
(marked in gray, black, pink, yellow, purple, and red). These paths might share
TBUs, but they do not have conflicts.

assume that a time-harmonic optical signal with input complex
magnitude b following this path goes through the square mesh.
Then, according to (2), the output response is:

b · (−1)q ·
(
αe−jω

neffL
c

)l
= b · αle

−j
(
ω

nefflL
c +qπ

)
(3)

Note that the (−1)q factor corresponds to the fact that a TBU
in bar state might introduce an additional 180◦ phase shift, as
shown in (2). Here q can be regarded as either 0 or 1, depending
on the number of TBUs in bar state in the path. Neverthe-
less, the qπ phase shift is trivial, as it can be compensated if
we append additional phase shifts at the output of the square
mesh. More importantly, what we focus on are the remaining
frequency-dependent term l(ωneffL/c) which characterizes the
phase response, and the term αl which impacts the magnitude
response. These expressions manifest the rationale for basing
our analysis on the path length l. To facilitate discussion later in
the paper, we introduce the concept of a peripheral TBU and a
circuit configuration:

Definition 4: (i) A peripheral TBU refers to a TBU possessing
floating nodes. A non-peripheral TBU is a TBU with all four
of its nodes non-floating. (ii) A circuit configuration denotes a
specific arrangement for setting the state of each TBU (either
cross state or bar state) for all TBUs in the entire mesh.

As shown in Fig. 1(c), TBU10−11 is a peripheral TBU placed
vertically at the top left position. This example also indicates that
to apply our TBU naming format to a peripheral TBU, we have to
imagine a notional additional square cell (e.g., cell (1, 0) in this
case) at the outer left side. We note that each circuit configuration
uniquely corresponds to one binary string. For example, an all-
one string ‘11...11’ represents the scenario where all TBUs in
the PPIC are in cross states, whereas an all-zero string ‘00...00’
signifies the situation where all TBUs are in bar states. Fig. 2
shows four different example circuit configurations for a 2× 1
square mesh. In the following, we present several axioms in
Theorem 1 to lay the groundwork for later analysis.

Theorem 1: For an N ×M square mesh, we have the follow-
ing conclusions:

1) There are N(M + 1) +M(N + 1) TBUs in the circuit.
2) The total number of circuit configurations is

2N(M+1)+M(N+1).
3) The total numbers of floating and non-floating nodes are

(4N + 4M) and 4NM , respectively.

4) For each specific circuit configuration, the total number of
undirected optical paths is (2N + 2M).

5) An undirected optical path has two different floating
nodes, at the path start and end, respectively.

6) An undirected optical path passes through a vertical and a
horizontal TBU in turns, abbreviated to ‘· · ·VHVH· · · ’.

The above conclusions can be proved by straightforward
calculation. For (2), we note that each TBU has two state choices
(i.e., either cross or bar), and thus, the total number of circuit
configurations equals 2#TBU, where #TBU is provided in (1),
though some of them are identical under rotation or flipping. To
prove (4), we note that an undirected optical path ‘consumes’ two
floating nodes, because it must start from and end at a floating
node (Definition 3), and that there are (4N + 4M) floating
nodes in total by (3). Most importantly, we emphasize that the
(2N + 2M) undirected optical paths might share TBUs, but
they do not have any conflicts.1 See Fig. 2 for a visual example
on a 2× 1 mesh.

For a curious reader, we pose what may appear to be a simple
question: can a 2× 3 square mesh implement a path of length
3 or 7? After drawing and trying many possibilities by hand,
we find that a 2× 3 square mesh can implement a path of
length 7, but not 3. Even more surprisingly, neither is realizable
in a 2× 2 square mesh. To this end, our first question, which
will be answered in the next section, is: In an N ×M square
mesh, is path length x (x ∈ Z

+) realizable by some circuit
configuration?

III. ROUTING ABILITY OF SQUARE MESH

A. Realizability of a Single Path

First, we attempt to bound the value of x by investigating
the minimum and maximum realizable path length in an N ×
M square. Obviously, the minimum path length equals 1. The
following Theorem 2 answers the maximum length question.

Theorem 2: Enumerating all possible circuit configurations,
the maximum path length that an N ×M square mesh can
achieve equals (4NM + 1).

Proof: The proof is made up of two parts: (i) the maximum
path length cannot be larger than (4NM + 1), and (ii) a path
of length (4NM + 1) is indeed realizable in an N ×M square
mesh. For (i), we prove by contradiction: Assume a path of length
x ≥ 4MN + 2 is realizable. Then, the number of nodes on this
path is (x+ 1), which is no less than (4MN + 3). Since we only
have 4NM non-floating nodes as depicted in Theorem 1 (3),
then this path must experience at least 3 floating nodes, which
contradicts Theorem 1 (5).

Now, we prove (ii) by constructing a path of length (4NM +
1). In outline, we first show the construction in the case of a
2× 2 square mesh in Fig. 3(a). The key of the construction is
to make the optical path traverse all cells following (1, 1) →
(1, 2) → (2, 2) → (2, 1), and then reverse this trajectory going

1Proving the absence of conflict is subtle. Formally, conflicting occurs when
two undirected paths use the same node. However, it is obvious that for a fixed
circuit configuration, one node can only correspond to one undirected optical
path.
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Fig. 3. (a) Construction for maximum length (4MN + 1) in an N ×M
square mesh demonstrated in the case of M = N = 2. (b) Based on (a), we
change the top left peripheral horizontal TBU01−11 to cross state, yielding
a path of length 4MN . (c) Based on (a), we change the second top right
peripheral vertical TBU2M−2(M+1) to cross state, yielding a path of length
(4MN + 1− 2M). (d) We fix the start point of an undirected optical path to
the left side; based on the end point location, there are three different path types.

back to (1,1). We can generalize this construction to any N ×
M square mesh. Roughly speaking, we make the optical path
traverse the first row from left to right (e.g., (1, 1) → (1, 2) →
· · · → (1,M)). Then by setting TBU1M−2M to cross state, we
direct the optical path down to the next row, cell (2,M). Next, the
optical path will follow (2,M) → (2,M − 1) → · · · → (2, 1),
and so on and so forth. With a proper setting of all TBUs, the
optical path will follow a zigzag path traversing to the last cell
in the N -th row, and then reversely go back to (1,1).

Formally, we provide the construction in a general N ×M
square mesh. We set one peripheral TBU, TBU10−11, all non-
peripheral vertical TBUs, and (N − 1) non-peripheral horizon-
tal TBUs,

{TBU1M−2M , TBU21−31, TBU3M−4M , · · ·
, TBU(N−1)M−NM or TBU(N−1)1−N1}︸ ︷︷ ︸

depends on if N is odd or even

to cross state, while all other TBUs are set to bar state. Then an
undirected optical path with start and end at the floating nodes
of TBU10−11 has length of (4NM + 1). �

Theorem 2 implies that if x is not an integer in the range
[1, 4NM + 1], then it will not be realizable in anN ×M square
mesh. Then is any integer path length in the range [1, 4NM + 1]
realizable? Unfortunately, the answer is no, as the curious reader
might have found for themselves in trying to synthesize a path
of length 3 or 7 in a 2× 2 square mesh. We will determine the
realizability condition ultimately, but before that, we need some
further understandings on path length.

A square mesh PPIC has four sides: top, bottom, left, and right.
The start node of an undirected optical path must be located on
one of these sides, and the end node must also be located on one
side, which may be the same or different side than for the start

node. Now, consider an undirected optical path with start point
on the left side of a 2× 2 mesh shown in Fig. 3(d). Based on
where the end point is, there are three types: (i) Type S: the gray
path, where the end point is located on the same side as the start
point 2; (ii) Type A: the red path, where the end point is located
on the adjacent side (i.e., top or bottom in this case) of the start
point; and (iii) Type O: the yellow path, where the end point is
located on the opposite side (i.e., the right side in this case) of
the start point. We observe that the path length possesses very
different characteristics for these three cases, as summarized in
the following Theorem 3.

Theorem 3: Consider an undirected optical path in anN ×M
square mesh. Without loss of generality, we assume its start point
is located on the left side of the square mesh, and denote its path
length by l.

1) Type S: If the path’s start and end nodes are located on the
same side, then l ≡ 1 (mod 4).

2) Type A: If the path’s start and end nodes are located on
adjacent sides, then l ≡ 0 or 2 (mod 4).

3) Type O: If the path’s start and end nodes are on oppo-
site sides, then l ≡ 3 (mod 4) if M is odd, and l ≡ 1
(mod 4) if M is even.

Here the modulo remainder notation l ≡ d (mod 4) means that
l has a remainder of d (d = 0, 1, 2, 3) when divided by 4.

Proof: Theorem 1 (6) states that any undirected optical path
can be expressed using the notation ‘· · · VHVH · · · ’, where ‘V’
and ‘H’ stand for vertical and horizontal TBUs, respectively,
starting from the start node. We assume the start point is located
on the left side; thus, the first TBU seen by this path must be a
vertical one (see Fig. 1(c)).

Now if a path belongs to type A, then the last TBU seen by
this path must be horizontal (see Fig. 1(c)). Thus, in this case, the
path follows ‘VHVH · · · H’, which implies that this path must
see 2d TBUs (i.e., d vertical and d horizontal) in total. Namely,
l is even. For later consistency, we write the path length in this
case as l ≡ 0 or 2 (mod 4).

If a path belongs to type S, then the last TBU seen by this path
must be vertical, which indicates that this path follows ‘VHVH
· · · V’. We denote the total number of ‘H’s on this path by d.
Then, the path length is l = 2d+ 1 since the number of ‘V’s
is one larger than that of ‘H’s. Now, if we can prove d is even,
then we will attain the desired conclusion l ≡ 1 (mod 4) for
type S. Let us complete the proof by assuming there are d0 ‘H’s
corresponding to the path going in the forward direction (from
left to right). Then, since both the start and end points are on the
left side, there must be d0 ‘H’s corresponding to the backward
direction (from right to left) as well. Otherwise, the end point
cannot be on the left side. Thus, the total number of ‘H’sd = 2d0,
implying d is indeed even.

Now we deal with type O. The proof for this case is similar to
that for type S. If a path belongs to type S, then the last TBU seen
by this path must be vertical, and this path follows ‘VHVH · · ·
V’. If there are d0 ‘H’s corresponding to going in the backward
direction (from right to left), then there must be (d0 +M) ‘H’s

2To clarify, the end point and the start point can belong to different TBUs. As
long as they are on the same side, the path type is S.
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corresponding to going in the forward direction, since the end
point is located at the right side. Thus, there are (2d0 +M)
‘H’s in total. The number of ‘V’s is (2d0 +M + 1), and the
path length l = #H +#V = 4d0 + 2M + 1. This implies that
l ≡ 3 (mod 4) if M is odd, and l ≡ 1 (mod 4) if M is even.�

Corollary 1: Following the same assumptions of Theorem 3,
the maximum and minimum path length for different types
is listed below, and the bound is achievable by some circuit
configuration.

1) Type S: 1 ≤ l ≤ 4MN + 1
2) Type A: 2 ≤ l ≤ 4MN
3) Type O: 2M + 1 ≤ l ≤ 4MN − 2M + 1
Proof: For (1), if we set a peripheral vertical TBU at the

left side to bar state, then its two floating nodes build up an
undirected optical path of length 1. For the upper bound, we have
already provided a construction for the maximum path length
(4MN + 1) in Theorem 2 and the constructed path belongs to
type S.

For (2), the minimum path length 2 is demonstrated by the
red path in Fig. 3(d). For the upper bound, first because l cannot
be (4MN + 2) or larger due to Theorem 2 and l must have
remainder of 0 or 2 due to Theorem 3, l has to be smaller
than 4MN . Moreover, we can provide a circuit configuration
to achieve the length 4MN based on the construction shown in
Theorem 2: we further change TBU01−11 to cross state, yielding
a path of length 4MN belonging to type A. See Fig. 3(b) for an
illustration in a 2× 2 square mesh.

For (3), that the minimum path length equals (2M + 1) is
straightforward, as demonstrated by the yellow path in Fig. 3(d).
Namely, the minimum path is attained when the yellow path
attempts to directly go from left to right. However, due to the
special topology, it will pass through M horizontal TBUs, and
(M + 1) vertical TBUs in turns, leading to l = 2M + 1. For the
upper bound, we first notice that a path of type O consumes at
most one edge of each peripheral horizontal TBU (see Fig. 3(c)).
Since there are 2M peripheral horizontal TBUs, andM(N − 1)
non-peripheral horizontal TBUs, a path of type O represented
by ‘VHVH · · · HV’ at most consumes 2NM ‘H’s because of:

2M × 1︸ ︷︷ ︸
‘H’ by peripheral horizontal TBUs

+ M(N − 1)× 2︸ ︷︷ ︸
‘H’ by non-peripheral horizontal TBUs

However, 2NM ‘H’s will make the path’s start and end point
both at the left side, and the path will be of type S not type
O. To enforce the path being type O (i.e., end at the right
side), we have to subtract 2NM by M at least. In summary,
the maximum number of ‘H’s a path of type O can consume
is M(2N − 1), where NM ’H’s correspond to going in the
forward direction (i.e., from left to right), and the remaining for
the backward direction. As we have explained in Theorem 2,
the number of ‘V’s is one larger than the number ‘H’s. Thus,
we have l ≤ 2M(2N − 1) + 1 = 4MN − 2M + 1. Now, we
demonstrate (4MN − 2M + 1) is achievable. Similarly, based
on the construction shown in Theorem 2, we make one modifica-
tion: we further change TBU2M−2(M+1) to cross state, yielding
a path of length (4MN + 1− 2M) belonging to type O. See
Fig. 3(c) for an illustration in a 2× 2 square mesh. �

Theorem 2 and Corollary 1 provide us the information on path
length based on the path type. When presenting Theorem 2 and
Corollary 1, we assume that the start point is located on the left
side, while it should be straightforward to generalize them to
other cases, such as the start point on the right/bottom/top side.
We do emphasize that for path type O, the generalization should
be done carefully, as suggested by the following Corollary 2.

Corollary 2: Consider an undirected optical path in an N ×
M square mesh. We assume its start point is located on the
top side of the square mesh, and denote its path length by l. If
it belongs to type O (i.e., start and end point at opposite sides),
then l ≡ 3 (mod 4) if N is odd, and l ≡ 1 (mod 4) if N is
even. Moreover, 2N + 1 ≤ l ≤ 4MN − 2N + 1.

In essence, for type O, when the start point is on the left or
right side, the condition should be depicted using the number
of columns M ; and when the start point is on the top or bottom
side, the condition should be depicted using the number of rows
N . Now, we are ready to present our first main theorem about
the realizability of a single path.

Theorem 4: (Main Result I) For anN ×M square mesh and
a desired path length x, we denote three integer sets:

Γ� = {d | d ≡ 0, 1, 2 (mod 4), 1 ≤ d ≤ 4MN + 1}
ΓM ={d | d≡3 (mod 4), 2M+1≤d≤4MN+1−2M}
ΓN ={d | d≡3 (mod 4), 2N+1≤d≤4MN+1−2N}
1) If both N and M are even, then any x ∈ Γ� is realizable;

x �∈ Γ� is not.
2) If N is even and M is odd, then any x ∈ Γ� ∪ ΓM is

realizable; x �∈ Γ� ∪ ΓM is not.
3) If N is odd and M is even, then any x ∈ Γ� ∪ ΓN is

realizable; x �∈ Γ� ∪ ΓN is not.
4) If both N and M are odd, then any x ∈ Γ� ∪ ΓN ∪ ΓM is

realizable; x �∈ Γ� ∪ ΓN ∪ ΓM is not.
Proof: For (1), using Theorem 3 with Corollary 1 and 2, we

readily obtain for any x �∈ Γ� that it is not realizable. Similar
conclusions hold true for cases (2)–(4). The remaining task is to
provide constructions showing that for any x in our defined set,
it is indeed realizable.

In the following, we will demonstrate the construction
method using a small square mesh; extending to a gen-
eral N ×M mesh is straightforward. To begin, we demon-
strate the construction method for case (1) using a 2×
2 square mesh in Fig. 4. The key is to use all cells
in a zigzag order: {(1, 1), (1, 2), . . . , (1,M), (2,M), (2,M −
1), . . . , (2, 1), (3, 1), (3, 2), · · · }. Take l ≡ 1 (mod 4) as an ex-
ample. The set {5, 9, . . . , 4MN + 1} contains NM integers,
where 9 occurs in the second place, and thus we will use cell (1,
1) and (1, 2) as shown in the second sub-figure in the top row
of Fig. 4. As another example, the set {2, 6, 10, . . . , 4MN − 2}
contains NM integers, where 6 occurs as the second, and thus
we will use cell (1, 1) and (1, 2) as shown in the second sub-figure
in the middle row of Fig. 4.

For case (2), we can apply the construction method we show
for case (1) to deal with x ∈ Γ�, and we only need to pro-
vide a construction method for those x ∈ ΓM . We demonstrate
our construction in Fig. 5. The set ΓM = {2M + 1, 2M +
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Fig. 4. Illustration of construction for Γ� using a 2× 2 square mesh (i.e., N = M = 2). Note that l = 1 is trivial, and is not shown in the first row.

Fig. 5. Illustration of construction for ΓM using a 2× 3 square mesh.

5, . . . , 4NM − 2M + 1} contains (NM −M + 1) integers.
To realize the first desired path length (2M + 1), we will use
all cells in the first row (i.e., cell {(1, 1), (1, 2), . . . , (1,M)}),
as shown in the first sub-figure in Fig. 5. Then for the re-
maining other desired path length, we will gradually exploit
one additional cell in the zigzag order: {(2,M), (2,M −
1), . . . , (2, 1), (3, 1), · · · }. Finally, the construction for cases (3)
and (4) should already be understood as they are similar to
case (2). �

Thus far, we have thoroughly answered the question of what
path length x is realizable in an N ×M square mesh. Our
findings provide valuable guidance when routing optical signals,

such as where to put input and output nodes. We will consider
such applications in Section IV.

B. Realizability of Multiple Paths

Building upon the single-path case, a more interesting ques-
tion is: In an N ×M square mesh, can we find a circuit
configuration to realize y paths, each of length x? In this
section, we make the number of paths a variable y (instead
of fixing it to 1 as the previous section did), and investigate
the maximum value of y given the value of x. As a quick
example, when x = 1, we know the maximum value of y is
(2N + 2M) because path 1 is only realizable using peripheral
TBUs.

Theorem 5: For a fixed circuit configuration of an N ×M
square mesh, we collectively denote the lengths of all (2N +
2M) undirected optical paths by Γ = [l1, l2, . . . , l2N+2M ].
Then the sum of all undirected optical paths

∑2N+2M
i=1 li

can be written in the format (2N + 2M + 4 k), for some
k ∈ {0, 1, . . . , NM}. Moreover, when the path sum equals
(2N + 2M + 4k0), then

1) The path average Γ̄ = 1 + 2k0

N+M .
2) For any undirected optical path, its path length 1 ≤ li ≤

4k0 + 1.
3) The path variance σ2(Γ) ≤ 8k2

0

N+M − 4k2
0

(N+M)2 .
and the bound in (2)–(3) are achievable.
Proof: We first prove that the path sum is in the format

(2N + 2M + 4 k), for some k ∈ {0, 1, . . . , NM}. According
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to Theorem 1 (1), there are (2NM +M +N) TBUs in to-
tal. Since each TBU has two edges that can be used by the
optical signal (regardless of bar or cross state) [8], there are
(4NM + 2N + 2M) edges altogether. Furthermore, each edge
occurs at most in one undirected optical path, so the maximum
path sum equals (4NM + 2N + 2M). We should notice that
achieving length sum (4NM + 2N + 2M) is an ideal case in
which all of the edges of the square cell are used and that there
is no untraveled closed loop in the circuit. Next, we consider
the case when closed loops exist; we will show that each closed
loop not being used by any undirected optical path must have
length 4 k, which further implies that the path sum equals
(4NM + 2N + 2M − 4 k), where k = 0, 1, . . . , NM . Note
that the construction for each k ∈ {0, 1, . . . , NM} is already
shown in the first row of Fig. 4. The proof is straightforward if
we notice that a closed loop indicates that the loop passes an
even number of ‘V’s and even number of ‘H’s, so that it can start
from a non-floating node and also ends at the same node. Thus,
its length is 4 k because the path length equals the sum of the
number of ‘V’s and ‘H’s.

Now, we prove the three statements. The first statement
about path average is trivial, because the path sum equals
(2N + 2M + 4k0) while the number of paths is (2N + 2M).

For the second statement, we first emphasize that Theorem 2 is
a special case of Theorem 5 (2) when k0 = NM . Now, we notice
that when the path sum equals (2N + 2M + 4k0), there will be
k0 square cells consumed by some undirected optical paths. If
the maximum path length is larger than (4k0 + 1), following the
same thought as in Theorem 2, we see that it will lead to at least
3 non-floating nodes, or (k0 + 1) square cells used. Either case
will result in a contradiction.

To prove the third statement, we retrieve a conclusion from
statistics: If a random variable lies in the range [a, b], and its mean
is μ, then its variance is upper bounded by (μ− a)(b− μ). In
our case, substituting a with 1, b with (4k0 + 1), and μ with
(1 + 2k0/(N +M)), proves statement (3).

Last, but not least, we provide a construction achieving the
bound shown in statements (2) and (3). We enforce one path
length to be (4k0 + 1) and the remaining (2N + 2M − 1) path
lengths all to be 1. The construction for such is already shown
in the first row of Fig. 4. Now, the variance is given by:

σ2(Γ) =
1

2N + 2M

2N+2M∑
i=1

(li − Γ̄)2

=
(4k0 + 1− Γ̄)2 + (2N + 2M − 1)(1− Γ̄)2

2N + 2M

Further substituting the path mean Γ̄ = 1 + 2k0/(N +M) as
provided in Theorem 5 (1) into the above expression, we have:

σ2(Γ) =
1

2N + 2M

(
4k0 − 2k0

N +M

)2

+

(
1− 1

2N + 2M

)
4k20

(N +M)2

=
8k20

N +M
− 4k20

(N +M)2

which is exactly the expression shown in Theorem 5 (3). �
The following theorem quantifies the multi-path routing abil-

ity of an N ×M square mesh.
Theorem 6: (Main Result II) If y paths each of length x can

be realized in an N ×M square mesh with a circuit configura-
tion, then we have:

y ≤ min

{⌊
4NM

x− 1

⌋
, 2M + 2N,C1, C2

}
where 
·� represents rounding to the integer below.C1 represents
an additional constraint active under the case when x is even:

C1 =

{
4, If x is even
+∞, Else

Similarly, C2 is an extra constraint active under the case when
x ≡ 3 (mod 4):

C2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, If x ≡ 3, N and M are even
0, Ifx ≡ 3, N is even ,M is odd , x �∈ ΓM

0, Ifx ≡ 3, N is odd ,M is even , x �∈ ΓN

0, Ifx ≡ 3, N and M are odd , x �∈ ΓN ∪ ΓM

+∞, Else

Proof: The bound (2M + 2N) is trivial; since we have
(2M + 2N) undirected optical paths in total, y cannot be
larger than this bound. The bound C2 reuses the conclusion of
Theorem 4, imposing an additional requirement when x ≡ 3
(mod 4). Additionally, we have the following inequality be-
cause the path sum cannot be larger than (2N + 2M + 4NM):

xy + ā(2N + 2M − y) ≤ 2N + 2M + 4MN

where ā represents the average path length of the remaining
(2N + 2M − y) paths. Noticing that ā ≥ 1 and 2N + 2M −
y ≥ 0, we have:

xy+1(2N+2M − y) ≤ 2N+2M+4MN → y ≤ 4NM

x− 1
.

Our remaining task is to justify the bound C1. In essence, the
bound C1 states that a square mesh at most realizes four paths
of a specified length x if x is even. To prove this, we recall
that in Theorem 3, an even-length path is only possible if the
path belongs to type A. We consider the case when M and N
are both sufficiently large compared to x (e.g., M,N ≥ 2x). As
we are merely looking for the upper bound of y, imposing this
additional assumption is not restrictive; however, it also implies
that the bound C1 = 4 might not be tight for the case when M
and N are comparable with x (e.g., x = 4, N = 1, and M = 1).
Under this assumption, if there are d0 paths of lengthx realizable
at the top left corner (i.e., with start node at the left side, and
end node at the top side) of the square mesh, then by symmetry,
there will be 4d0 paths of length x realizable in total since there
are four corners (see Fig. 6). In the following, we will prove that
the maximum value of d0 equals 1 in the case x = 4, justifying
the bound C1. Generalizing the proof to an arbitrary even x is
straightforward, and is omitted here.

Fist, as shown in Fig. 6, we prove that for all paths of
length four realizable at the top-left corner using some circuit
configurations, they all must pass through nodeA. As we already
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Fig. 6. For all paths of length four realizable at the top-left corner using
some circuit configurations, they all must pass through node A, which is the
intersection of the red and yellow circle.

Fig. 7. (a) In a 2× 3 square mesh, comparison of our upper bound provided
in Theorem 6 and the real maximum value of y by brute-force enumerating all
circuit configurations. We also see that no paths (y = 0) are possible for paths
of length x = 3 and x = 23 in a 2× 3 square mesh. (b) Plot of our estimated
upper bound for y versus different x in a 21× 21 square mesh.

mention in the proof of Theorem 3, a path of length four will
follow ‘VHVH’. We consider where the optical path is after
passing through the first ‘VH’ pair, and is about to pass through
the second ‘VH’ pair. For simplicity, this location is referred to
as the intermediate node. Since the optical path starts from the
left side, the intermediate node must be located at a node in the
red circle shown in Fig. 6 after passing through the first ‘VH’
pair. Furthermore, since the optical path will pass through the
second pair ‘VH’ and then reach the top side, we reverse this
process and find that the intermediate node must be located in the
yellow circle. Thus, the intersection of the red and yellow circle
uniquely determines that a path of length four at the top-left
corner must pass through node A.

Next, we state an obvious conclusion: For a fixed circuit
configuration, if we know that two undirected optical paths pass
through the same node, then these two paths actually are identical
(i.e., they refer to the same path). With the above two pieces, we
can complete our proof. Given a circuit configuration, we assume
that there are two different paths of length four synthesizable at
the top-left corner. Using the first conclusion, we know both of
them pass through node A. Then, using the second conclusion,
we see that these two paths are actually identical. �

In Fig. 7(a), we use a 2× 3 square mesh as an example to
demonstrate how tight our provided upper bound in Theorem 6
is. Note that in a 2× 3 square mesh, there are already 17 TBUs,

Fig. 8. Two different circuit configurations of a 2× 2 square mesh to realize
Λ1 = [2, 4, 6, 8].

resulting in 217 circuit configurations. Brute-force enumeration
of all configurations is only barely time affordable.

Extending the aforementioned theorems to other topologies,
such as triangular and hexagonal meshes, is straightforward and
is summarized in the Appendix. An important observation from
such analysis is that square meshes are not able to implement
some lengths in the range [1, 4NM ], while triangular and hexag-
onal meshes do not have this problem. In the next section, we will
discuss some potential implications and usage of our findings.

IV. IMPLICATIONS AND APPLICATIONS

In this section, we present several potential applications based
on our findings. Note that the PPIC we present here is of
relatively small size consistent with demonstrations to date in the
literature (e.g., 1× 2 square mesh shown in Fig. 3 of [7]). Our
described applications become even more appealing as PPIC
sizes scale up in the future.

A. Guidelines for Setting N and M

In this subsection, we demonstrate how to use our derived
conclusions to determine the appropriate values of N and M
given a collection of integer path lengthsΛ that we wish to realize
on a square mesh. Note that this question form has real-world
implications. For instance, when we want to synthesize a fourth
order finite impulse filter with a square mesh as the delay line,
thenΛ should be an arithmetic sequence with four elements (e.g.,
[2,4,6,8]). As another example, if we want to use the square mesh
to route four optical signals while keeping their phases equal,
then Λ should be a collection containing four identical integers
(e.g., [3,3,3,3]).

Consider the first example where we want to realize path
length collectionΛ1 = [2, 4, 6, 8] on a square mesh. Suppose we
want the row and column to be balanced (i.e., N = M = x ∈
Z
+), and we try to determine x using our previous conclusions.

Theorem 2 imposes the first inequality constraint: 8 ≤ 4NM +
1 = 4x2 + 1, which givesx ≥ 2. Then, we use the path sum con-
clusion in Theorem 5, leading to another inequality constraint:
2 + 4 + 6 + 8 < 2N + 2M + 4NM = 4x+ 4x2, which gives
x ≥ 2. As shown in Fig. 8, a 2× 2 square mesh indeed can
realize Λ1 = [2, 4, 6, 8] simultaneously. Finally, we emphasize
that as our theorems provide lower bounds, so using these theo-
rems serve as a necessary condition, but might not be sufficient.
Namely, x < 2 is definite to fail for Λ1 = [2, 4, 6, 8], but x = 2
might not be sufficient either, and 2 is only a starting search
point.
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The first example is of relative small scale, and even a
direct guess without knowing our conclusions might attain
a good result. In the second example, we consider Λ2 =
[6, 10, 14, 18, 22, 26] and balanced row and column (i.e., N =
M = x). Estimating x without knowing our conclusions is
quite difficult. On the other hand, our Theorem 2 requires:
26 ≤ 4x2 + 1, which gives x ≥ 3. Moreover, the path sum
conclusion in Theorem 5 requires: 6 + 10 + 14 + 18 + 22 +
26 ≤ 2N + 2M + 4NM = 4x+ 4x2, yielding x ≥ 5. Since
both of these two constraints must be satisfied, we suggest
starting from a 5-by-5 square mesh for this particular Λ2. To
end this example, notice that a configuration realizing Λ2 =
[6, 10, 14, 18, 22, 26] on an N -by-M square mesh with TBU
length L and TBU loss α is equivalent to another configuration
realizing Λ′ = [3, 5, 7, 9, 11, 13] on a square mesh with TBU
length L′ = 2L and TBU loss α′ = α2 from the perspective
of magnitude and phase response, as evidenced by (3). How-
ever, we must emphasize that in terms of synthesizing Λ and
Λ′, they are completely different. Specifically, path length 3
is required in Λ′, and as stated in Theorem 4, either N or
M must be 1. This will be more clear in the following third
example.

In the third example, we consider Λ3 = [3, 5, 7, 9, 11, 13].
Note that in the previous Λ1 and Λ2, the required path lengths
are all even, so that they will not have remainders equal to
3 when divided by 4. However, 3 and 11 in Λ3 both have
remainder of 3 when divided by 4. As stated in Theorem 4,
at least one of M or N must be odd to handle these cases.
Moreover, path length 3 is even more special; when substituting
it as d into the inequality given in Theorem 4, it requires either
M = 1 orN = 1. Without loss of generality, we assumeN = 1.
As in our previous examples, using Theorem 2 and the path
sum conclusion, we have: 13 ≤ 4NM + 1 and 3 + 5 + 7 + 9 +
11 + 13 ≤ 2N + 2M + 4NM , yielding M ≥ 8. As a byprod-
uct, this example suggests that careful treatment needs to be
taken if a path length of remainder 3 when being divided by 4 is
present.

In the fourth example, we consider a reverse example. Can
a 2-by-2 square mesh implement Λ4 = [1, 18]? We find 18 is
larger than the maximum allowed path length 4NM + 1 = 17,
so the answer is no. Then, what about Λ4 = [1, 2, 4, 5, 8, 10]?
We observe that the sum of Λ4 is 30 larger than the allowed
4NM + 2N + 2M = 24, so the answer is no. As a further
follow up, what about Λ4 = [1, 1, 1, 1, 2, 4, 5, 10]? The answer
is still no, because now we have eight paths in Λ4, reaching
the maximum allowable paths 2N + 2M = 8 realized in a
2-by-2 square mesh. This motivates us to calculate the mean
of Λ4, which equals 3.125 and cannot be written in the form
shown in (1) of Theorem 5. In summary, our theorems pro-
vide several criteria to rule out unreasonable path length col-
lections for a predefined size of square mesh with almost no
cost. Note that in this reverse example, we try to detect which
inequality constraints defined in our theorems Λ4 violate. If
any of these constraints are violated, we can be certain that
Λ4 is impossible to realize. However, to fully prove its fea-
sibility when none is violated, we would need to construct a
solution.

Fig. 9. Ambiguity occurs when attempting to determine each individual α
value for non-peripheral TBUs. If {α1, α2, α3, α4} is a solution as shown in
(a), then (b) will also be a solution. As an example, if {α1, α2} satisfy the
measurement result of the red optical path, then {bα1, α2/b} will also satisfy
the measurement result for some constant b.

B. Inverse Measurement and Characterization

Model-based circuit design has extensive application in elec-
tronic integrated circuits, as exemplified by the widely employed
BSIM model for MOS devices, with parameters fit by device and
circuit measurements. In a parallel manner within our context,
compact and accurate models for the TBU devices will be crucial
for programmable photonic meshes to gain widespread usage.
In this subsection, we demonstrate how to use our theorems
to inversely characterize the value of α once a square-mesh
PPIC chip is fabricated. We set all TBUs to cross state, so
that the length sum of the (2N + 2M) optical paths equals
(2N + 2M + 4NM). We inject (2N + 2M) optical sources
independently from each of the input nodes. We use an optical
network analyzer (ONA) to measure the complex transfer func-
tions (i.e., the complex ratios of the output signals over the input
signals), denoted by {r1, r2, . . . , r2N+2M}, where each ri is
a complex scalar, including both the information of magnitude
and phase response. Based on (3), it is straightforward that we
have the following relation:

2N+2M∏
i=1

|ri| = α
∑

i=1 li = α2N+2M+4MN (4)

where li represents the length of the i-th optical path. It implies
that once we have the measurements {r1, r2, . . . , r2N+2M}, we
can inversely estimate α by:

α = exp

( ∑
i=1 log |ri|

2N + 2M + 4NM

)
. (5)

Note that in real fabrication, process variation exists, and
it is likely each TBU will have a slightly different α, de-
noted by {α1, α2, . . . , α2N+2M}. Under this circumstance,
(5) actually provides an estimation of their geometric mean,
i.e., 2N+2M+4NM

√
α1α2 · · ·α2N+2M . As a byproduct, read-

ers might be curious if we can estimate each individual
{α1, α2, . . . , α2N+2M}, not solely their geometric mean. Un-
fortunately, ambiguity arises when we try to do so as shown in
Fig. 9.

By analogy to inversely measuring α, we can do the same
thing for the TBU length L. Still setting all TBUs to cross state,
then the variable q in (3) for any optical path will be zero. Thus,
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we have the following relation:

2N+2M∑
i=1

Phase(ri) = −
(

2N+2M∑
i=1

li

)
· ωneffL

c

= −(2N + 2M + 4NM)
ωneffL

c
(6)

Note that the equality sign holds under the addition of integer
multiples of 2π (denoted by 2dπ later). If we assume that neff is
known, then we can inversely measure the TBU length variable
L via:

L =
c · [−∑2N+2M

i=1 Phase(ri) + 2dπ]

(2N + 2M + 4NM)ωneff
(7)

where d is an integer added to make the estimated L meaningful
(i.e., close to its design value). We note that it is expected that
ambiguity of the estimated value ofL occurs when doing this in-
verse characterization due to the periodicity of phase. Similarly,
due to process variation, each TBU will have a slightly different
length parameter L, denoted by {L1, L2, . . . , L2N+2M}, and
(7) then estimates their arithmetic mean.

To end this subsection, we consider a variant of the above
approach, focusing on local characterization. We take inverse
measurement of α as an example. If we wisely set the TBUs into
bar/cross state, we can exclude a few TBUs from being passed
though by any of the (2N + 2M) optical paths, and the length
sum will equal (2N + 2M + 4k0), as depicted in Theorem 5.
In this case, the denominator in (5) should be revised to (2N +
2M + 4k0) accordingly, and the calculated α becomes a ‘local’
estimation. When only part of the square-mesh PPIC is exploited
in an application, this local inverse measurement might be more
accurate than the previous global one, and of particular interest.

V. CONCLUSION

In this paper, we theoretically investigate the routing ability of
programmable photonic integrated circuits under the assumption
that TBUs are either in cross or bar state. Such an assumption is
reasonable to be made in an optical routing application. Based on
the compact model of the TBU, we first show that the path length
(defined as the number of TBUs that a path passes through) is
decisive in the signal response, affecting both phase and magni-
tude. Next, we provide several theorems rigorously determining
what path length is realizable in single-path routing. Then, we
approach multi-path routing, providing analytical expressions
for the path length sum, and an upper bound on path length
variance and the maximum number of realizable paths. Finally,
a number of potential optical applications using our observations
are illustrated.

Future work includes using the proposed inverse measurement
technique to extract precise compact models for the TBUs
in fabricated PPICs. In the longer term, we envision that the
theoretical foundation established in this work will not only
serve as a base for broader implications but also inspire both
us and the entire community to explore novel applications of
these results.

Fig. 10. Parallelogram hexagonal mesh of size N ×M .

Fig. 11. Parallelogram triangular mesh of size N ×M .

APPENDIX A

The conclusions and proofs shown in the main text can be
well generalized to other topologies such as hexagonal mesh,
triangular mesh, with a few light modifications. In the Appendix,
we consider two popular topologies, parallelogram hexagonal
mesh, as shown in Fig. 10, and parallelogram triangular mesh,
as shown in Fig. 11. Other topology variants (e.g., concentric
hexagonal mesh) won’t be covered, while readers can derive
themselves by relying on the analysis methods we provide.
Theorem 7 summarizes the conclusions for a parallelogram
hexagonal mesh.

Theorem 7: For aN ×M parallelogram hexagonal mesh, we
have the following conclusions:

1) There are (4N + 4M − 2) peripheral TBUs, and
(3NM − 2N − 2M + 1) non-periperhal TBUs; There
are (8N + 8M − 4) floating nodes, and 6NM non-
floating nodes. There are (4N + 4M − 2) undirected op-
tical paths in total for one circuit configuration.

2) Denote an integer set Γ� = {d ∈ Z+ | 1 ≤ d ≤ 6NM +
1}. Any path length x ∈ Γ� is realizable via some circuit
configuration, while x �∈ Γ� is not.

3) Denote the lengths of all a undirected optical paths byΓ =
[l1, l2, . . . , la]. Then the sum of all undirected optical paths∑a

i=1 li can be written in the format (4N + 4M − 2 +
6 k), for some k ∈ {0, 1, . . . , NM}. Moreover, when the
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Fig. 12. Top row: Construction for finding a circuit configuration to realize l ≡ 4 (mod 6). Bottom row: Construction for finding a circuit configuration to
realize l ≡ 2 (mod 6).

path sum equals (4N + 4M − 2 + 6k0), then the path av-
erage Γ̄ = 1 + 3k0

2N+2M−1 ; the path length 1 ≤ li ≤ 6k0 +

1; the path variance σ2(Γ) ≤ 18k2
0

2N+2M−1 − 9k2
0

(2N+2M−1)2 .
4) If y paths each of lengthx can be realized with some circuit

configuration, then we have:

y ≤ min

{⌊
6NM

x− 1

⌋
, 4N + 4M − 2

}

All statements above can be similarly proved following our
treatment of the square mesh. In Fig. 12, we demonstrate how
to construct a circuit configuration to realize a desired path of
length x ∈ Γ� in the case of a 2× 2 hexagonal mesh. Specifi-
cally, the top row and bottom row respectively demonstrate the
construction for l ≡ 4 (mod 6) and l ≡ 2 (mod 6). To realize
l ≡ 3 (mod 6), we slightly modify the construction method
shown in the bottom row by changing the purple TBU11−01

and the orange TBU11−00 to bar and cross state, respectively.
Then the resulting red trajectory will have length satisfying
l ≡ 3 (mod 6). The key idea here is the same as shown in
Fig. 4. We initially consume cell (1, 1) and (1, 2) to realize
path length 8 or 9. Then, when the desired path length in-
creases to 6, we consume one more cell following a zigzag
order: (1, 1), (1, 2), . . . , (1,M), (2,M), . . . , (2, 1), (2, 2), · · · .
Similarly, the remaining cases l ≡ 5, 0, 1 (mod 6) can be han-
dled by modifying the pink, purple, and orange TBUs in the top
row. To end this section, Theorem 8 summarizes the conclusions
for a parallelogram triangular mesh. The construction method is
similar to that for parallelogram hexagonal mesh, and is omitted.

Theorem 8: We assume M is even, so that the N ×M
triangular mesh shown in Fig. 11 has a parallelogram shape.
We have the following conclusions:

1) There are (2N +M) peripheral TBUs, and ((3N −
1)M2 −N) non-periperhal TBUs; There are (4N + 2M)
floating nodes, and 3NM non-floating nodes. There are

(2N +M) undirected optical paths in total for one circuit
configuration.

2) Denote an integer set Γ = {d ∈ Z+ | 1 ≤ d ≤ 3NM +
1}. Any path length x ∈ Γ� is realizable via some circuit
configuration, while x �∈ Γ� is not.

3) Denote the lengths of all undirected optical paths using
a set: L = [l1, l2, . . . , l2N+M ]. Then the sum of all undi-
rected optical paths Γ =

∑2N+M
i=1 li can be written in the

format (2N +M + 3 k), for some k ∈ {0, 1, . . . , NM}.
Moreover, when the path sum equals (2N +M + 3k0),
then the path average Γ̄ = 1 + 3k0

2N+M ; the path length

1 ≤ li ≤ 3k0 + 1; the path variance σ2(Γ) ≤ 9k2
0

2N+M −
9k2

0

(2N+M)2 .
4) If y paths each of lengthx can be realized with some circuit

configuration, then we have:

y ≤ min

{⌊
3NM

x− 1

⌋
, 2N +M

}
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