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Abstract 

Existing work on coherent photonic reservoir computing mostly concentrates on 
single-wavelength solutions. In this work, we discuss the opportunities and challenges 
related to exploiting the wavelength dimension in integrated photonic reservoir 
computing systems. We will focus on multi-node waveguide-based integrated RC systems 
developed on a silicon photonics platform.  These systems have been shown to perform 
well  in our previous work but suffer from a large footprint which limits economic 
viability.  
 
Different strategies are presented to be able to process several wavelengths in parallel 
using the same readout. This increases the system bandwidth without increasing the 
footprint. It is shown that a single-readout photonic reservoir system can perform with < 
1% BER for bit-level tasks on several WDM channels in parallel, even when taking 
manufacturing deviations. This clears the way toward commercial viability of photonic 
RC systems as the same chip footprint now has significantly increased processing power 
and reliability. 

Introduction 
Reservoir computing (RC) employs a randomly initialized fixed recurrent neural network 
(RNN), called the reservoir, which is left untrained and to which a simple linear readout 
layer is added. Only this linear readout is trained, greatly facilitating the practical 
application of RNN’s [1–3]. RNN’s differ from feedforward neural networks by 
preserving in their internal states a nonlinear transformation of the input history. Thus 
they have dynamical memory, which makes them suited to process temporal information. 

Photonics-based hardware implementations have an additional set of advantages. In 
particular, low power consumption and high data bandwidth make photonics-based 
hardware implementations attractive choices. In addition, exploiting wavelength division 
multiplexing enables parallelism. We will focus on multi-node waveguide-based 
integrated RC systems developed on a silicon photonics platform. We focus on making 
more efficient use of a given chip area by exploiting wavelength-division multiplexing 
(WDM). 

The different nodes of the reservoir are weighted in the analog optical domain for both 
amplitude and phase. We use a single set of optical weights for all wavelengths to 



 

 

maximize all the chip area savings. This can only be achieved in cases where a single task 
has to be executed for several wavelength channels in parallel. The simulated reservoir is 
an integrated passive silicon photonics reservoir based on the designs outlined in [4–6] 
(figure 1). The nodes consist of 3x3 multimode interferometers (MMIs). All nodes are 
connected to readout weights consisting of both amplitude and phase weights. A 
17th amplitude-phase weight set was connected to a continuous-wave optical signal 
serving as a trainable optical bias. The simulations are done in Photontorch [7], a set of 
photonic simulation tools for simulation and optimization of photonic circuits in time and 
frequency domain. 

 
Fig. 1. Schematic of the simulated system. Signal input in injected in the orange diamond 
shaped nodes. All nodes are connected to the readout. Arrows indicate propagation 
direction of the signal throughout the reservoir. 

Engineered Interconnection Lengths 
When all interconnections are of identical length, there will be frequency changes for 
which the corresponding phase shift variation equals an integer multiple of 2𝜋. The 
frequency change inducing a 2𝜋 phase shift is approximately constant, with variation 
being caused by dispersion. This gives rise to approximate frequency periodicity in 
reservoir performance (figure 2a). By engineering the waveguide interconnection length, 
one can ensure that the frequency spacing between DWDM or CWDM channels 
corresponds to this period. 

An important boundary condition is that the interconnection length should not surpass 
the distance that light can travel during a single bit period (𝑑max). This causes previously 
injected bits to be in transit in between nodes, hidden from the readout. There is thus an 
upper limit imposed on the interconnection length. This in turn imposes a lower limit on 
the frequency periodicity. For the bitrate 𝐵 of 32 GHz, employed throughout this paper, 
the maximum interconnection length 𝑑max ≈ 2 mm and the minimum frequency 
periodicity ≈ 32 GHz corresponding to a wavelength shift ≈ 0.257 nm around 1552.5244 
nm. 

We test this method using a nonlinear bit-level task, namely the delayed 2-bit XOR 
task. This task consists of performing the Boolean XOR operation using the current and 
previous bit. The readout weights are trained on a training bit stream of 1000 bits using 
ridge regression. 

To account for manufacturing variations interconnection phases need to be considered 
random and the interconnection length variations are normally distributed with mean 0 



 

 

nm and standard deviation 21.08 nm. 10 different reservoirs, each with different 
manufacturing deviations, were trained and tested. Results, using the minimum 
periodicity of 32 GHz, are shown in figure 2b. At 1552.5244 nm, and the wavelengths 
separated from it by the period, a BER ≈ 0.3% is achieved for all reservoirs.  

 
[a] 

Fig. 2. Exploiting engineered interconnection length. (a) Training only occurred for one wavelength 
(1552.5244 nm), as indicated by the orange arrow. (b) Performance for the delayed 2-bit XOR task. 
Error bars indicate minimum and maximum achieved BER over 10 different reservoirs each with 
their own manufacturing deviations. 

 

Multiple-Wavelength Training 
Another method consists of minimizing the MSE for multiple frequency channels 
simultaneously (figure 3a). Here there are no boundary conditions on frequency spacing. 
 

 
[a] 

Fig. 3. Multiple-wavelength training. (a) Training occurred at 2 wavelengths as indicated by the 
orange arrows. In this case, we used 1552.4489 nm and 1552.4994 nm. (b) Performance for the 
delayed 2-bit XOR task. Wavelength channels achieve approximately 0.4% mean BER. Error bars 
indicate minimum and maximum achieved BER for different reservoirs with their own simulated 
manufacturing deviations. 

 

Conclusion 
We demonstrated that a single-readout photonic RC system can perform with < 1% 
BER at several wavelength channels for the delayed 2-bit XOR task. This was done 
while taking into account manufacturing deviations.  
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