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Abstract The idea of using photonic systems as reservoirs to perform general-
purpose computing was first introduced in 2008. Since then, a wide range of systems
using either discrete or integrated optical components has been explored. In this
chapter, we summarise a decade of research into integrated coherent photonic reser-
voirs. In these systems, information is carried by the intensity and the phase of light
waves.Computations emerge from theway the light propagates inside the system, and
the ways in which light that travels along different paths is mixed and transformed.
We discuss the computational capabilities of these reservoirs and the trade-offs that
can be made to optimise them. We also discuss the technological constraints that are
encountered in building such systems and the ways these reflect on their design and
training. Finally, we give an overview of recent approaches to combining multiple
such reservoirs into larger and computationally more powerful systems.

1 Introduction

Light is commonly used as an information carrier in telecommunication systems.
Optical communication has almost entirely replaced electronics for all but very short
distances, because electronic interconnect is inherently bandwidth limited and con-
sumes far more power at high data rates. Optical telecommunication systems are
now mostly held back by the fact that computation is still performed electronically.
The limitations of electronics pop up at the boundaries between the optical and the
electronic domain, where optical signals are converted into electronic ones and vice
versa. This fact has revived the interest in pushing as much computation as possible
into the optical domain. However, the devices and material systems used for inte-
grated photonics do not match well with the typical behaviour of elementary digital
building blocks such as logic gates and flipflops. For this reason, the general-purpose
divide-and-conquer design methodology used for electronic digital computing sys-
tems is not portable to photonics. Also, in contrast to integrated electronics, device
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dimensions are hard coupled to the wavelength of the light that is used, which means
that integrated photonics does not scale well. For this reason it is essential to find the
sweet spot in the trade-off between computational power and area. Although ded-
icated analogue optical components are being designed for specific tasks, a design
methodology for general-purpose analogue photonic components does not exist. On
the positive side, the trade-off between bandwidth and power is generally better
for photonic than for electronic devices, raising the hope that integrated photonic
computing devices can push computation speeds even higher for digital information
processing.

Around the beginning of the twenty-first-century, the principles of what is now
known as reservoir computing showedup in several scientific publications. Echo state
networks (ESN) (Jaeger 2001) and Liquid StateMachines (LSM) (Maass et al. 2002)
are the most commonly cited ones. What they have in common, is the fact that useful
computation can be done by random dynamical systems, provided that the dynamics
can be globally tuned to a useful regime: stable, but close to the edge of chaos.1

Although the systems originally studied were simulated artificial neural networks,
operating in discrete time, this fascinating idea soon stimulated other researchers to
explore whether physical dynamical systems could also be used as reservoirs in this
setup, giving birth to the field of physical reservoir computing. Photonic systems
have been among the first physical reservoirs that were studied.

Two large families of photonic reservoirs exist. Time multiplexed reservoirs
(addressed in other chapters of this book) use a single or very few physical non-
linear processing units. They are time-multiplexed, using delayed feedback to pro-
vide dynamics and memory (Brunner et al. 2013; Larger et al. 2012, 2017; Paquot
et al. 2012). They have been shown to be capable of solving relatively complex tasks,
even image classification (Hermans et al. 2015), at very high bandwidths. They are in
principle scalable towards complex tasks, but this requires longer delay lines, making
their implementations rather bulky. In contrast, the parallel integrated photonic reser-
voirs which are the topic of this chapter are much closer to the echo state networks
they are based on. They are integrated, and therefore small. They are also optimised
for low power and very high bandwidths. The performance of integrated photonic
reservoirs has been studied numerically for networks of ring resonators (Andre et al.
2014; Mesaritakis et al. 2013, 2015; Vandoorne et al. 2011; Zhang et al. 2014),
networks of SOAs (Vandoorne 2011), and experimentally with networks of delay
lines and splitters (Vandoorne et al. 2014). Integrated photonic reservoirs are partic-
ularly compelling when implemented in a CMOS-compatible platform as they can
take advantage of its associated benefits for technology reuse and mass production.

This chapter describes our vision, the research route we followed and the lessons
we learned. We start by giving an overview of the technological hurdles that have
been (and are still being) taken to obtain low-power tunable computing modules. We
then highlight recent first steps towards a scalable design methodology with such
modules. We will not elaborate on state-of-the-art technologies for designing and

1 Although edge of chaos is the common term in dynamical systems theory, the term edge of stability
has always felt like a more appropriate term in this context.
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fabricating the components we use, since that can be found in publications. Instead
we focus on the interplay between system optimisation, which starts from known
good practices in unconstrained (software) reservoir computing, and the technical
possibilities and constraints of the chosen implementation substrate. In this way, we
hope that our path and the lessons we learned can also inspire researchers who are
exploring other physical substrates and systems.

2 From Ideas to First Prototypes

Early research on integrated photonic reservoir computing aimed to mimic Echo
State networks with tanh nonlinearities as closely as possible, while exploiting the
potential benefits of integrated photonics: high bandwidth and low power. However,
as software models, ESNs are entirely unconstrained with respect to properties like
connectivity, connection weight values, neuron non-linearity or time scales. In con-
trast, in any physical implementation medium, limitations arise from physical and
device constraints, or from fabrication issues. In addition, the often misleading near-
infinite precision of software simulations is replaced by finite precision due to limited
measurement accuracy and various noise sources. The very first conceptual descrip-
tion of a possible integrated photonic reservoir (Vandoorne and Bienstman 2007)
proposed to use a regular 2D grid of Semiconductor Optical Amplifiers (SOAs) as
reservoir nodes and had a “waterfall” interconnection topology (Fig. 1). Between that
very first concept and the time ofwriting this chapter lies a decade of interdisciplinary
research, combining systematic architecture and device optimisation, machine learn-
ing methods, targeted technological innovations and prototyping efforts. The result
is systems that are now ready to bridge the final stretch between academic research
and industrial take-up in the telecommunications sector.

2.1 Coherent Light and Planar Topologies

When using light as an information carrier, there are several options with respect to
the way information is encoded into the signal. A first choice to make is to use either
incoherent light or coherent light. In the first case, the information is carried only by
the light intensity, represented by a positive real number. In the second case, the signal
has both a magnitude (still positive) and a phase, and should therefore be modelled
as a complex number. Like in our brains, the presence of inhibition, i.e., connections
with negative weight between neurons, is crucial for computation in artificial neural
networks. Early studies (unpublished) have confirmed that ESNs in which all signal
values and all weights are positive perform very poorly. However, coherent light
has both a phase and a magnitude. Equally, connections introduce both a phase
shift and a change of magnitude (usually a loss). This implies that all operations
in coherent optical reservoirs need to be modelled as complex-valued operations.



400 J. Dambre et al.

Input

Fig. 1 Planar architectures for integrated photonic reservoirs: (left) the Waterfall topology from
Vandoorne and Bienstman (2007) with the input signal inserted in the top-left node and optional
feedback connection s(dashed lines) and (right) the Swirl topology that was first introduced in
Vandoorne et al. (2008) and is still the basis for most recent work. No input injection is indicated
here, since multiple variants have been investigated

As a consequence, even with only positive weights and positive light intensities,
the addition of coherent light signals can be subtractive as well as additive w.r.t. to
the magnitude of the signals. This is the main reason why coherent platforms were
adopted early on for integrated photonic reservoirs.

Because of their integration on a 2D chip, integrated photonic reservoirs are also
two-dimensional (planar) structures. Using photonic integrated waveguides for con-
necting neurons means that sharp bends and interconnect crossings cause prohibitive
losses, excluding the stacking of layers of interconnect, as in electronic chips. For this
reason, a purely planar connection graph is preferable. The most common approach
is one in which each neuron has at most four neighbours. Initially, the input signal
was injected into a single node only. After the initial concept that was based on
the waterfall architecture (Vandoorne and Bienstman 2007) (Fig. 1, left), subsequent
studies as well as first prototypes were based on the Swirl architecture (Vandoorne
et al. 2008) (Fig. 1, right), which was designed to introduce optimal mixing of the
internal state signals within the constraints of a planar structure. The connections
are made by waveguides, which are passive components and therefore introduce no
gain (only loss). They can be modelled as complex-valued weights with a magnitude
smaller than 1 and a phase shift relative to their length. Each waveguide also has a
propagation delay that is again relative to its length.

2.2 Readout and Training

In these reservoirs, a part of the light is split off at the output of each node and
converted back into an electronic signal by a photodetector. This conversion of light
intensity into an electrical signal non-linearly transforms each reservoir state (essen-
tially quadratically) before linearly combining the states in the readout, trained with
ridge regression.
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In practice, the fabrication tolerances on the lengths of integrated waveguide con-
nections are such that their loss and propagation delay are very close to the designed
values, but the deviations of the phase shifts are so large that it is safest to con-
sider each individual phase shift as random and different for each physical reservoir
instance. In fact, due to the otherwise very regular topologies of the integrated pho-
tonic reservoirs, the variability of the phase shifts is their main source of richness.
All simulation studies and design choices described in this chapter are based on per-
forming simulations for a number of reservoirs with the same design parameters and
random phases and reporting the average results.

However, there is also a downside to this uncontrollability: because of the dif-
ferences between individual reservoirs, weights trained in simulation perform very
poorly on the physical devices. Therefore, once they are fabricated, each individual
reservoir will always need a calibration stage for training its readout. It is also not
possible (or at least not within a reasonable time) to construct an accurate simula-
tion model for individual physical reservoirs, since this would require a procedure
to extract the actual values of all interconnection phases. This means that typical
neural network training or optimisation approaches based on the application of gra-
dient descent (backpropagation) cannot be used to optimise internal parameters of
integrated photonic reservoirs.

2.3 Delays, Non-linearity and Power

The first integrated photonic reservoir architectures that were thoroughly studied
and systematically optimised (simulation only) used a 4 × 4 array of Semiconductor
Optical Amplifiers (SOAs) as reservoir nodes with a swirl connection structure. The
input signal was initially inserted into a single node only (Vandoorne et al. 2008).
The hyperparameters to be optimised for these reservoirs were the scaling and bias
for the input signal, the bias current (determining the operating point of the SOAs)
and the delay of the inter-node waveguides. The inter-node losses were fixed by the
technology and consisted of the splitter losses, combiner losses and the waveguide
losses, which were coupled to the waveguide length.

A first important conclusion from this initial work is the fact that tuning the inter-
node connection delay is crucial for good performance. The importance of reservoir
time scales was already pointed out in Verstraeten (2009) for simulated reservoirs
(ESNs). The point of using a reservoir for computation is the fact that it naturally
has memory, i.e., current state signals still depend to some extent on past inputs.
This memory is weaker for inputs that lie further in the past. In order to solve a
task on a given input signal (or signals), the reservoir has to be able to remember
any past information from the input that is useful for the task and its bandwidth has
to be high enough to respond to changes in the input signal. A physical reservoir’s
memory is determined by how fast signals (echo’s) fade away (the losses) or are non-
linearly mixed with other signals. Its bandwidth is affected by the bandwidths of all
components, i.e., in photonic reservoirs: the signal generation and input modulation,
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the SOAs, and the detector. Non-linear mixing occurs in the nodes (SOAs). The inter-
node interconnections in integrated photonic reservoirs act as delay lines, i.e., sources
of near-perfect memory. Although their loss is length dependent, it is dominated by
splitter and combiner losses. For this reason, changing the inter-node delays directly
impacts the memory without strongly affecting the non-linear mixing in the nodes.
This means that for each task, inter-node interconnection lengths need to be tuned to
match the relevant time scales in the input signal and the task.

A second conclusionwas to drop the SOAs in future designs. It turns out that using
SOAs nodes would increase the overall power budget above acceptable limits. They
were originally introduced into the network to provide non-linearity, and because
their static input-output characteristics more or less resemble the upper half of the
hyperbolic tangent function that is commonlyused inESNs. It is generally understood
that ESNs are in some sense universal approximators for fading memory functions,
provided they can be made large enough (although some discussion exists about
the precise conditions). Moving further away from ESNs by removing the non-
linearity from the nodes and shifting it to the readout reduces the set of functions a
reservoir can approximate. However, in that respect, the SOAs turned out to offer
only limited advantages: at the optimal parameter settings for several benchmark
tasks, they operated in an almost linear regime (Vandoorne 2011). In practice and
for tasks that are not strongly non-linear, the non-linearity from the photodetectors
alone is sufficient to achieve state-of-the-art performance (Vandoorne et al. 2014).

The two lessons above gave rise to the first actual implementation of an integrated
photonic reservoir. Since the SOAs were omitted, it was a 4 × 4 purely passive Swirl
network consisting of waveguides, splitters and combiners. For telecom tasks on
bitstream signals, the lengths of the delay lines were optimised relative to the bit
period. This made the design easily portable to operate at different bitrates, simply
by changing the delay line lengths. Strangely enough, this also decreases the footprint
of the reservoir for larger bitrates. For commonly used analogue benchmarks with
much slower time scales like spoken digit recognition, the inputs were artificially
speed up in order to achieve the optimal relation between signal and reservoir time
scales. This first physical implementation contained only the reservoir itself. The
readout was implemented in software after driving the reservoir with a long input
sequence multiple times, each time measuring one reservoir state with a photodetec-
tor and storing it for further processing. The experimental results in Vandoorne et al.
(2014) demonstrate that a 4 × 4 passive integrated photonic reservoir can yield error
free performance on the header recognition task for headers up to 3-bit in length.
Simulations for larger reservoirs indicated that it should be possible to go up to 8-bit
headers (see Fig. 2). We additionally demonstrated that the passive integrated pho-
tonic reservoir can be used for bit-level manipulations on digital optical bit streams
that could be useful for various tasks in telecommunication. Vandoorne et al. (2014)
contains more information about the chip design and fabrication procedure.
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Fig. 2 Simulated andmeasured performance of a 4 × 4 swirl passive integrated photonics reservoir
on the 3- and 5-bit header recognition task and simulated performance of a 6 × 6 reservoir on the
8-bit header recognition task (Vandoorne et al. 2014). The plots show the dependency of the error
rate on the inter-node delays in the reservoir, relative to the bit period

2.4 Next Generation Reservoir Architectures

From the perspective of power consumption, the step to passive integrated reservoirs
was crucial, since it removes all power consumption inside the reservoir. In addition,
it allows the reservoir to be implemented in the CMOS-compatible silicon photonics
technology, which drastically lowers the technological barrier for industrial take-up.
However, the fact that there is no more gain inside the reservoir affects the reser-
voir performance: although signals still travel in the reservoir, their magnitudes now
decrease very rapidly due to losses. When only a single reservoir node is driven by
the input signal, the power in many nodes ends up below the detection limit (noise
margin) of the photodetectors. Under these circumstances, evenmildly scaling up the
reservoir to address more difficult tasks makes no sense since this will not increase
the number of nodes with detectable power levels. For this reason, follow-up simula-
tion studies over the last few years have focused on designing more power-efficient
reservoirs by reducing the losses or by shifting to totally different architectures. In
what follows, we summarise recent progress on three lines of research.

Optimisation of the input distribution

Increasing the input power, even if this were desirable, does not help much because
the losses accumulate in amultiplicativemanner as light travels further from the input
node. It turns out to much more effective to split the available input power budget
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Fig. 3 Error rate for the one-bit-delayed XOR task versus total input power for different injection
scenarios in a 4 × 4 passive Swirl reservoir. The minimum measurable error, given the number
of bits used for testing, is 10−3 (Katumba et al. 2017). Note that the power budget only includes
the power that is actually sent into the reservoir. It does not include the additional power that is
consumed by the driving and receiving circuits as these have not been modelled in our simulations

across multiple input nodes (Katumba et al. 2017). Spreading the input power evenly
across all nodes yields the best accuracy for a given power budget (Fig. 3 illustrates
this).

However, the design and fabrication also become more difficult as the number of
nodes that are driven by the input increases. For a 4 × 4 Swirl architecture, driving
only the four central nodes is an excellent compromise between reservoir perfor-
mance and technological complexity (Fig. 3). For the same accuracy, a reservoir
with this input scheme needs about 2 orders of magnitude less power than when only
a single node is driven to achieve almost the same performance as a reservoir for
which the input power is distributed evenly across all nodes. Clearly, the outcome
of this optimisation is closely linked to the size and connectivity of the reservoir.
For the 16-node reservoir, the four central nodes form a single connected loop, from
which power flows into the undriven boundary nodes. For larger architectures, the
ideal trade-off may lie elsewhere. Ideally, for each future architecture, the input
connectivity and reservoir connectivity must be jointly optimised.

Thus far, most benchmarks addressed with integrated photonic reservoirs have
been relatively simple. However, scaling up to larger reservoirs in order to solvemore
difficult tasks onlymakes sense if the additional nodes actually contribute. Spreading
the available input power across multiple nodes as in Katumba et al. (2017) makes
this possible. However, it also makes the design more complex because the input
signal needs to be coupled into more nodes. Also, driving nodes off the boundary
of the planar network necessarily leads to crossings or the need for coupling the
light into the nodes vertically (from the top). For this reason, it is desirable to keep
the number of driven nodes as small as possible. If this can be complemented with
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Fig. 4 Extension of swirl
architecture (left) to more
power-efficient four-port
architecture (right):
connections that were added
are shown in red

technological solutions to reduce the losses, the fraction of nodes that need to be
driven to achieve good performance can be further reduced. Two such approaches
for loss reduction have been investigated.

Multi-mode reservoirs
The original passive reservoirs were designed to guide only a single mode. Note
that the term mode in this context refers to the different transverse modes of the
waveguide. Since part of the losses are due to light that leaks away to other modes,
it could be beneficial to design a reservoir in which some of these other modes are
also guided, such that the power that leaks into them is not lost. In this way, using
multi-mode reservoirs can help to realise a better power balance.

The use of multi-mode rather than single-mode reservoirs was studied in simu-
lation for passive reservoirs in which only a single node is driven (Katumba et al.
2018a). The successful application of this approach strongly hinges on the design
of a novel multi-mode Y-junction with carefully tailored adiabaticity that lowers
the losses at combination points in the photonic network constituting the reservoir.
It turned out that, for a 36-node (6 × 6) reservoir, we can gain up 30% in per node
power, especially for nodes that are furthest from the input point. Although the power
in the boundary nodes is still lower, This extra power boost could be the difference
between being below or above the noise floor at a node. In future work, additional
benefits of multi-mode reservoirs will be investigated. For example, separate modes
can carry different degrees of freedom, which could be beneficial for mixing the
input signals.

New architectures
In the swirl architecture (repeated in Fig. 4, left), each node has atmost two inputs and
two outputs. However, this maximum is not reached for all nodes. The four corner
nodes only have a single input and output, which means that no signal mixing occurs
in them. All other boundary nodes have three ports (either only one input or only one
output). Thismeans they need asymmetrical combiner or splitter deviceswhich suffer
frommodal radiation losses. These losses are inherent for non-symmetrical reciprocal
splitting devices, as on average there is a 50%modal mismatch between the two input
channels. By changing the architecture in such a way that each node has exactly two
inputs and twooutputs, these losses canbe avoided. Fromanarchitectural perspective,
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Fig. 5 Comparison between node power levels of 6 × 10 original swirl architecture and four-
port architectures when driven with bitstream signals: (left) histograms of node powers for both
architectures; (right) required detection thresholds for being able to detect a given number of nodes

the bestway to do thiswould be to extend the architecturewith so-calledwrap-around
connections at the edges. However, a wrap-around architecture is inherently not
planar, which means that crossings would be needed in a planar implementation. A
planar alternativewas proposed inwhichwrap-around connections are added only for
the corner nodes, and all other added boundary connections are non-crossing (Fig. 4,
right). Note that the four corner nodes now effectively form a second four-node loop,
similar to the inner four nodes. In Sackesyn et al. (2018), this new architecture is
compared with the swirl architecture in simulations in terms of loss and in terms
of performance on the equalisation of a non-linearly distorted BPSK signal. These
simulations (Fig. 5) show that the four-port architecture indeed suffers less losses
and thus has a better energy-efficiency as all input power at a node is redirected to
one of the two output channels instead of radiating away.

3 Training Reservoirs with Integrated Optical Readouts

3.1 Motivation

To train the readout of a physical reservoir computing system, all states that used in
that readout must be observable. In many cases, the reservoir is driven with the train-
ing input signal(s), the resulting reservoir states are recorded and one-shot learning
through ridge regression is used to obtain the optimal readout weights. However,
online learning (using recursive least squares or FORCE optimization Sussillo and
Abbott 2009) is also possible. For the integrated photonic reservoirs discussed thus
far, it was assumed that a photodetector would be needed for each reservoir state,
followed by an AD convertor because training is usually done in the digital domain.
Unfortunately, this solution would be challenging when scaling up to reservoirs with
more nodes and tuned to operate at higher bandwidths, as high-speed photodetectors
tend to be costly in terms of chip footprint.
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Fig. 6 Schematic of a fully optical readout. Each optical output signal is modulated by an Optical
Modulator (OM) implementing the weights. The optical outputs are then sent to a photodiode where
all signals are summed and then converted to a final electrical output signal

This chip area, as well as the power consumption of the photodetectors, could be
avoided by implementing the readout optically. Since the aim is to reduce costs (chip
area) and power consumption, the optical implementation of the readout should
equally not involve power-hungry weighting components for each state signal. A
straightforward tuneable optical weighting element can take the form of a reverse-
biased pn-junction. An even better solution would be to use non-volatile optical
weighting elements, such as the ones that are currently being developed by several
groups (Abel et al. 2013; Ríos et al. 2015; Van Bilzen et al. 2015). Figure6 illustrates
the concept of a fully optical integrated readout.

From a system designer’s perspective, this means we end up with a readout with
quite different properties from the original one (Fig. 6). In what follows, we sum-
marise each of these differences and their implications and discuss how they have
been taken into account in the designs for the next generation integrated reservoir
prototypes.

3.2 Limited Observability

As mentioned before, the fabrication tolerances of integrated waveguides are such
that the propagation phase of two nominally identical waveguides could be com-
pletely different. By averaging simulations across a number of randomly selected
instances, the global architectural parameters can be tuned. However it is not pos-
sible to build a simulation model that exactly matches the behaviour of individual
physical reservoirs, which means that training the readout weights cannot be done
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in simulation. In fact, simulation studies have shown that, fro realistic settings of
the phase variability, weights trained in simulation are almost as bad as randomly
initialised weights (Freiberger et al. 2017).

As long as the fabrication tolerances do not improve, this implies that device-
specific training on the actual hardware will always be necessary. Thus far, no techni-
cal solutions have been found that indicate that the actual optimisation of the weight
values could also be done optically, on the physical hardware, so opto-electronic
conversion and digital training still remain necessary. For this reason, we maintain
a single photodetector after the linear readout. However, in order to record all state
signals for training, it no longer suffices to send the input sequences through the
reservoir once. Remember that the photodetector’s output is essentially the squared
magnitude of its optical input. Obtaining the state signals implies that we need to
know their magnitude, but also their phase, relative to a reference phase. It turns
out that this is in fact possible with a single photodetector by driving the reservoir
with the same input signals multiple times (just under three times per state signal),
each time with different settings of the weights (Freiberger et al. 2018). Under ideal
conditions, this non-linearity inversion procedure is exact. Each signal’s magnitude
is obtained by setting all weights to zero except for the observed signal. To obtain
the relative phases, one signals phase is chosen as a reference and two measurements
are necessary to obtain the relative phase for each of the other signals. Once this pro-
cedure has been executed, training can be done offline. Once the weights have been
trained, the reservoir can operate without the need for digital processing, althoughwe
expect that re-training or tuning may be necessary at regular intervals to compensate
for any causes of drift or non-stationarity in the system.

3.3 Non-linearities and Complex-Valued Regression

With an integrated optical readout, the non-linearity of the single photodetector
(now the only non-linearity in the system) is applied after the linear combination
and the accuracy of the reservoir is evaluated after the photodetector. However, ridge
regression is a linear technique. In order to use it in this new setting, the desired signal
values after the non-linearity have to be converted back into desired complex-valued
signals before the non-linearity. After that, the optical weighted sum at the readout
is now a linear combination in the complex domain, which can be optimised using
complex-valued ridge regression (Hoerl and Kennard 1970).

A straightforward way to obtain complex-valued target signals is to again invert
the non-linearity by taking the square root of the original target signal as magnitude
and setting the desired phase to an arbitrary value (e.g., zero). Unfortunately, this pro-
cedure yields rather disappointing results for tasks that really require non-linearity. A
simple example is the highly non-linear XOR task on bitstream input signals, where
the desired output is again a bitstream signal, representing the Boolean XOR of the
current bit and the previous bit. This task could easily be solved by the reservoirs
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Fig. 7 Mathematics of a complex readout for two states: although each weighted input’s phase
is constant in time (chosen at −30◦ and +100◦ in the figure), the phase of the linear combination
varies in time

without optical readout, i.e., with a (non-linear) photodetector for each state signal,
but turns out to be much harder with a single photodetector after the readout.

One part of the reason for this is the fact that, purely froma function approximation
point of view, taking a weighted sum of non-linearly transformed signals offers more
non-linear richness than taking the samenon-linear transformationof aweighted sum.
However, it also turns out that setting targets for the complex-valued signals before
the photodetector is far from optimal. This can be explained as follows. First, fixing
the magnitude of the signal also fixes the operating point of the output non-linearity.
Since the output signal can easily be rescaled and shifted in the electrical domain,
this is not necessary. Second, and more importantly, fixing the phase to a single value
is overly restrictive. Let’s consider the simplest case of combining two states. The
weights are constant in time and so is the phase for each of the state signals. The
readout is therefore the sumof two complex-valued signals withmagnitudes that vary
in time and constant phases. Due to the properties of complex addition, the phase of
this readout also varies in time, as illustrated in Fig. 7. This simple example shows
why trying to enforce a constant phase to the outputs of the readout constrains the
solution space unnecessarily. The phase in the complex domain is of no relevance
to the signal after its transformation to the electrical domain, so it should be left
unconstrained.

Since ridge regression is an optimisation technique for linear models, we cannot
use it without setting targets in the complex domain. Instead, we use gradient descent
to minimise the error between the electrical output signal and the complex-valued
weights directly. We previously explained why using gradient descent is not possible
for optimising the entire reservoir due to the uncertainty about inter-node connection
phases. However, the phases in the paths between the readout weights and the pho-
todetector are included in the signals obtained fromnon-linearity inversion procedure
and a differentiable model for the photodetector is quite straightforward.

The replacement of ridge regression by gradient descent avoids enforcing any
values for the complex-valued signal between the linear combination and the pho-
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Fig. 8 Comparison of ridge regression with complex-valued targets and gradient descent for the
XOR task on bitstream input (reservoir using four-port architecture of 4 × 4 nodes and input applied
to all nodes)

todetector. The trained parameters are the magnitudes and phases of all weights
(including the constant weight) as well as the bias and rescaling after the photode-
tector:

ŷ(t) = wbias + wscale

(
m0 ∗ e jφ0 +

n∑
i=1

mi ∗ e jφi ∗ xi

)2

, (1)

where n is the number of state signals used in the readout, wbias and wscale operate
in the electrical domain (i.e., after the photodetector) and m0 . . .mn and φ0 . . . φn

are the tuneable magnitudes and phases of the optical weights. Figure8 illustrates
the striking the difference between trained outputs obtained using ridge regression
with complex-valued targets and using gradient descent directly on the real-valued
targets at the output of the photodetector. This example indicates that, despite initial
expectations, having a single non-linearity at the readout does not dramatically affect
our reservoir performance. This is mostly due to the fact that we are working in the
complex domain (with coherent light).

3.4 Limited Precision

Readout weights can be implemented using different approaches. From the perspec-
tive ofminimising power, there is a large difference between volatile and non-volatile
technologies. Volatile approaches, like reverse-biased PN-junctions, can typically be
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tuned with fine resolution, but they need power to maintain their set value. In con-
trast, non-volatile weight elements only consume power when their value is being
set, but the physics of the current candidate technologies do not allow for high res-
olution. A typical example with such a limitation is a weighing element based on
barium titanate (BaTiO3) (Abel et al. 2013), an integration of a transitionmetal oxide
material. These elements are typically able to bring only 20 discrete weight levels.
Clearly, this limited precision of the tuneable weights needs to be investigated since
it can be expected to affect reservoir performance.

The impact of weight precision has been analysed in simulation. For a first study,
we assumed the same number of levels for both the magnitudes and the phases of
the weights. The readout was trained in the same way as with infinite precision and
the weights were quantized only after training, using discretisation at 8, 16, 32 and
64 discrete levels (also referred to as 3-, 4-, 5- and 6-bit quantization, respectively).
Figure9 illustrates the results for a header recognition task, each time sweeping
across different values for the inter-node delay (arbitrary units). We can conclude
that, without taking any additional measures, the performance degenerates a lot for
3-bit quantisation. For 4 or more bits, the error rate at the optimal inter-node delay is
notmuch higher than for the casewith infinite precision but there remains some varia-
tion between the results for individual reservoirs. At 6 bits resolution, this variability
disappears almost completely. These results are promising, given the fact that no
measures have yet been taken to take weight quantisation into account during train-

Fig. 9 Error rate when using quantised optical weights (red curves) in a header recognition task,
as a function of interconnection delay. The weight resolution (in bits) is indicated at the top of each
plot. For comparison, the blue curves show the case of infinite weight resolution
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ing. Reduced weight precision in real-valued networks is currently being actively
addressed in deep learning research. In view of introducing autonomous deep learn-
ing in embedded systems (without needing cloud connectivity) it is crucial to reduce
the computational cost of inference in deep neural networks. One way to approach
this is to use (extremely) reduced precision (Gupta et al. 2015; Hao et al. 2017).
Results have even been proposed that go as far as using binary weights (Bengio and
David 2015; Rastegari et al. 2016). By developing approaches for quantised training
that are adapted to complex-valued readouts, we expect to be able to relax the pre-
cision requirements on integrated optical weights to 16 or even 8 quantisation levels
(3 or 4 bits).

4 From Modules to Systems

4.1 The Future of Single Reservoir Modules

Based on simulation results, the architectural improvements mentioned in the pre-
vious sections should be sufficient to allow good reservoir performance for small
to medium-sized reservoir modules. Second-generation prototypes to evaluate these
claims have been designed and are being characterised at the time of writing this
chapter. At the same time, more challenging applications in the telecom area are
being addressed. Although a lot of optical processing is already being done in that
domain, it is mostly linear. For this reason, we are focusing on non-linear tasks on
optical telecom signals.

One problem that is being addressed is the restoration of optical signals that have
degraded due to non-linear distortions during generation, transmission and reception
phases (Djordjevic et al. 2010). Causes for this can be traced back to effects like
dispersion, amplified spontaneous emission at amplification points, attenuation and
reflections in fibre links, optical nonlinearities in fibres or timing jitter introduced at
O/E and E/O points. Today, such restoration is typically done in the digital electronic
domain using advanced DSP post-processing, but such an approach consumes a
lot of power and chip real estate. Photonic reservoir computing could provide an
alternative here, to undo (part of) these signal impairments already in the optical
domain. Katumba et al. (2019) shows non-linear compensation in unrepeated metro
links of up to 200km that outperform electrical FFE-based equalisers, and ultimately
any linear compensation device. For a high-speed short-reach 40Gb/s link based on
a Distributed Feedback Laser (DFB) and an Electroabsorptive Modulator (EAM),
and considering an HD-FEC limit of 0.2102, the reach can be increased by almost
10km using a reservoir with only 16 nodes. These results show for the first time
that integrated photonic reservoir modules can be competitive to the-state-of-the-art
solutions in the telecommunications domain.
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The next step is to address more complex tasks. Most often, tasks on optically
encoded digital signals are performed on data encoded with a binary modulation
format, but this can be extended to the much more complex case of computing
directly on a PAM-4 signal, a two-bit per symbol amplitude modulation format. This
is equivalent to performing Boolean computations in a 4-valued space. In Katumba
et al. (2018b), initial results are given for operations on PAM-4 signals modulated at
10GHz, which translates to a bitrate of 20GHz. These indicate that small reservoirs
like the ones discussed above cannot solve this. Even an 8 × 8 swirl reservoir has a
symbol error rate of approximately 30%. However, the complexity of this task allows
us to test how this can improve for increasing reservoir size. In this case, there was
a close to linear improvement and for the largest simulated reservoir in that study
(20 × 20 nodes), the symbol error rate had decreased to 5%. Although this is only
a first study, it suggests that there is still quite a bit of room for improvement in
addressing more complex tasks simply by scaling up the reservoir.

In parallel to the application-directed research, which aims to pave the road to
industrial take-up,more fundamentally different reservoir architectures are also being
explored. The reservoirs discussed thus farwere still based on the earliest ones, which
tried to follow the conventional node structure of neural networks quite closely. How-
ever, the field of physical reservoir computing has evolved a lot since the early days.
In particular, as is clear from the variety of contributions in this book, the dynamical
systems used as reservoirs do not have to follow the straitjacket of interconnected
nodes. In particular, the inherently parallel nature of photonics allows for architec-
tures in which the light propagates and mixes in free space. A possible design for an
integrated free-space photonic reservoir consists of a photonic crystal cavity with a
quarter stadium shape (Laporte et al. 2018), depicted in Fig. 10. In this design, the
quarter stadium shape makes sure that an input signal gets mixed in a complicated
manner (Liu et al. 2015; Sieber et al. 1993; Stöckmann and Stein 1990). The mixed
light leaks out of the cavity along the connected waveguides which provide the state
signals to the readout. As can be seen in the figure, the mixing of light within the
cavity is very rich. In fact, it is richer than in the waveguide-based reservoirs, while
at the same time using considerably less chip area. The time scales of the reservoir
depend on the time-of-flight inside the cavity (the cavity dimensions) and how well
the light is confined inside the cavity. The cavity in Fig. 10 was optimised for optical
bitstream signals at a bitrate of around 50Gbps. Its dimensions are 30µm × 60µm.
In theory, cavities as small as 7µm × 7µm are possible, which would allow bitrates
up to 1 Tbps. Based on simulations, this photonic crystal design promises very low
loss and excellent performance several benchmark telecom tasks, such as the highly
non-linear XOR task and header recognition tasks, while still accepting bitrates in a
wide region of operation (Laporte et al. 2018).
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Fig. 10 Optical field profiles in a photonic crystal cavity. In the example, input is applied through
a single channel. Thanks to the specific profile of the cavity’s boundary, the mixing of the optical
fields inside the cavity is very rich. The mixed light leaks out of the cavity along all the waveguides
which are routed to a readout

4.2 Making Ensembles of Reservoir Modules

Although initial results indicate that there is still room for improvement with respect
to task complexity by scaling up reservoirs, it is well known in the reservoir comput-
ing community that there are bounds to what you can achieve simply by making a
reservoir larger and using more observed states in the readout. One of the main rea-
sons for this is that, due to the interactions inside the reservoir, the states are usually
highly correlated and it becomes more difficult to exploit the residual information
that is added by additional states as the state space grows larger. For simulated reser-
voirs, such as infinite precision echo state networks, this would require an increase
in the amount of training data. Physical reservoirs do not have infinite precision due
to noise and measurement inaccuracies, so their performance tends to saturate even
faster as a function of reservoir size. This limits the applicability of single reservoir
modules.

In order to go beyond what can be achieved with a single reservoir module, more
extensive training is required by building networks of interconnected reservoirs, in
which training occurs only at the inter-module interfaces. Unfortunately, we are again
(heavily) constrained by the fact that, due to process variability, the detailed behaviour
of individual reservoirs cannot be modelled in simulation. This effectively rules
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out backpropagation, the workhorse of deep learning, as a top-down optimisation
approach. Instead, targets for each individual reservoir module must be explicitly
defined based on the global task targets.

In machine learning, ensembling is an overarching name to achieve exactly that:
increasing task performance beyond what can be achieved with a single model. In
order to work well, the models in an ensemble must be different, i.e., the mistakes
theymakemust be as uncorrelated as possible. Variation betweenmodels of the same
type can be achieved by training them on different subsets of the training data or the
input features. They can also be trained to correct each other’s mistakes (boosting,
Friedman et al. 2001).

In an initial simulation study of ensembling for photonic reservoirs, we consider
ensembles in which each model is of the same type: an integrated 4 × 8 photonic
four-port reservoir with interconnection delays tuned for operation at 30 Gbps. Since
the interconnection phases of each reservoir are randomly chosen, each reservoir is
already unique and different from the others. Since this work was performed in
parallel with the research on optical readouts described in Sect. 3, it focused mostly
on reservoirs with electrical readouts, i.e., with the non-linear transformation of a
photodetector for each signal that is used in the readout.

We selected a number of approaches of combining four such reservoirs and com-
pared them to the baseline case of a single 16 × 32 reservoir with the same architec-
ture. The approaches we considered in this study are illustrated in Fig. 11. In the first
type (single-stage ensemble), the observed states of all modules in the ensemble are
concatenated into a single readout. In the second type, gradient boosting, only the
first module is trained on the original task, while each consecutive module is trained
to correct the mistakes of its predecessor’s outputs. As a third approach, we have also
evaluated the paradigm of stacking, which has already been applied in the context of
reservoir computing (Keuninckx 2016; Nichele andMolund 2017). In this approach,
each reservoir is trained on the original task. Only the first module is driven with the
original input signal, while each consecutive module is driven with its predecessor’s
trained output (converted back into the optical domain. Finally, we introduce a new
combination technique inspired by these approaches, which we refer to as chaining.
Like in gradient boosting, each module is driven with the original input and like in
stacking each readout is trained on the original task. However, from the second mod-
ule onward, each readout also receives the trained output from the previous reservoir
as an input. This offers a different way for the readouts to correct the mistakes of the
previous reservoirs.

The architectures described above were evaluated on two benchmark tasks. The
first task is the XOR task on bitstream data, but nowwith 3 bits delay. This means that
the desired output is the Boolean XOR of the current binary symbol and that which
lies three-bit periods in the past. This task has the same non-linearity requirements
as the XOR task used before, but it requires more memory. The second task is the
1 sample ahead prediction Santa Fe task (Weigend and Gershenfeld 1993). Table1
summarises the error rates obtained for these two tasks at 30Gbps. Error rates printed
in bold face indicate the best performing approach per task, error rates in italic
the second best. This table shows that the single-stage ensembling systematically
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Fig. 11 Types of ensembles of reservoirs with electrical readout considered in the initial study.
Components operating in the optical domain are shown in blue, components in the electrical domain
in yellow

Table 1 Results for electrical training/coupling at 30 Gbps

Task Baseline Ensemble Boosting Stacking Chaining

XOR 3-bit
delay (BER)

0.006 0.001 0.041 0.222 0.038

Santa Fe
(NMSE)

0.028 0.022 0.038 0.038 0.027

outperforms the baseline of a single large reservoir. This is good news, since we
expect it will be technologically easier to combine multiple small reservoirs than to
make a large one. The main reason for this is that optically routing power from all the
nodes to the readout becomes more difficult when the dimensions of the architecture
increase. Boosting and stacking are consistently worse than the baseline. This was
also the case for experiments at other bandwidths (not shown). For our proposed
chaining approach, conclusions are mixed. At 30Gbps, its performance is between
the baseline and the ensemble for the Santa Fe task but worse than both for the XOR
task. However, at other bandwidths, this gap is closed and chaining again matches
the ensemble’s performance.
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Clearly, this is only an initial study, in which many possibilities for optimisation
are yet to be explored. In view of our recent progress on integrated readouts trained
with gradient descent, the next study will focus directly on those architectures. It will
also cover amore extensive range of combination approaches. For example, the recent
approach followed inGallicchio andMicheli (2017),Gallicchio et al. (2018) is similar
to but not the same as the stacking performed above. In those works, each reservoir
module is driven with all the states of its predecessor (with untrained weights). The
readout is trained on the aggregated states of all reservoirs in the ensemble. This
architecture performs better than the one studied here because, as the information
flows from reservoir to reservoir, each subsequent reservoir has amemory that reaches
further into the past. Translated to integrated photonics technology, it would have
to be simplified, e.g., by projecting a random combination of each reservoir’s states
back into the next reservoir and training the readout on all states in the electrical
domain.

5 Conclusion and Perspectives

In this chapter we outlined our research path on integrated photonic reservoir com-
puting, from its first steps in 2007 until today, when second-generation prototypes
have been designed are being characterised and at least one application is a promising
candidate for industrial take-up.

The focus in this chapter was on the impact of technological limitations on system
performance and on the architectural and operational solutions we developed to end
up with ever better performing systems. In view of the present results, we are more
confident now than a decade ago that this technology will eventually find its way
into industrial applications.

The last part of this chapter reported on first steps towards designing multi-
reservoir systems. It is clear that the ensembling approaches investigated in this
study do not offer sufficient improvement by themselves. Their limitation lies in the
fact that all targets for training individual modules are either equal to or directly
derived from the original task targets. This is not sufficient for building really power-
ful multi-reservoir networks. Candidate starting points for exploring architectures as
well as optimising them could be based on, e.g., reinforcement learning or large-scale
genetic black box optimisation approaches. However, what is really needed is a new
automatic and efficient divide-and-conquer design methodology for analogue com-
puting. Only then can reservoir computing with integrated photonic systems, as well
as other novel analog computing substrates, leverage general-purpose computation
in the optical domain.
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