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ABSTRACT   

Determination of both thickness and refractive index of a thin biomolecular or polymer layer in wet conditions is a task 
not easily performed. Available tools such as XPS, AFM, ellipsometry and integrated photonic sensors often have 
difficulties with the native wet condition of said agents-under-test, perform poorly in the sub-5 nm regime or do not 
determine both characteristics in an absolute simultaneous way. The thickness of a multilayer system is often determined 
by averaging over a large amount of layers, obscuring details of the individual layers. Even more, the interesting 
behavior of the first bound layers can be covered in noise or assumptions might be made on either thickness or refractive 
index in order to determine the other. To demonstrate a solution to these problems, a silicon-on-insulator (SOI) 
microring is used to study the adsorption of a bilayer polymer system on the silicon surface of the ring. To achieve this, 
the microring is simultaneously excited with TE and TM polarized light and by tracking the shifts of both resonant 
wavelengths, the refractive index and the thickness of the adsorbed layer can be determined with a resolution on 
thickness smaller than 0.1 nm and a resolution on refractive index smaller than 0.01 RIU. An adhesive 
polyethyleneimine (PEI) layer is adsorbed to the surface, followed by the adsorption of poly(sodium-4-styrene sulfonate) 
(PSS) and poly(allylamine) hydrochloride (PAH). This high-resolution performance in wet conditions with the added 
benefits of the SOI microring platform such as low cost and multiplexibility make for a powerful tool to analyze thin 
layer systems, which is promising to research binding conformation of proteins as well. 

Keywords: dual polarization, microring resonator, silicon-on-insulator, polymers, sensing, thin layers, integrated 
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1. INTRODUCTION  
In a Nature Chemistry Insight1, Connelly points out that a major part in the current development crisis of the 
pharmaceutical industry lies in our poor understanding of how our drug candidates function at a molecular level. Easy 
targets no longer exist and as is touched upon by Scannel2, a lot of current drugs lack the specificity to reach only the 
target biomolecule, hitting multiple unintended targets instead and thus causing collateral damage. In order to find these 
magic bullets we have to figure out what we are aiming at and how these bullets work. As such, there is a need for a 
high-throughput tool which can monitor different aspects of binding dynamics such as conformation, kinetic response 
and affinity of binding.  

Typical techniques that resolve the conformation of molecules are either bulk techniques or surface techniques. A 
powerful and accurate bulk technique such as NMR is adequate to study molecular dynamics and conformations3, but the 
signals are notoriously difficult to analyze and it requires a lot of biomolecules. Other bulk techniques such as multi-
angle light scattering measure the mass and the size of a molecule in an indirect way via the hydrodynamical radius4, 
approximating the shape by a sphere and averaging out over all three dimensions. In general, bulk techniques are not 
well suited for high-throughput measurements which are crucial for pharmaceutical lead discovery. This is more easily 
achieved with a surface technique. A large fraction of the existing optical surface techniques are refractive techniques, 
where the molecules bind to the surface which is probed by an optical mode, sensing the disturbance through a change in 
its effective index. However, the effective index of the optical mode is sensitive to both changes in the refractive index, 
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closely related to the volume density, and the thickness of the bound layer. In essence, the optical mode cannot 
distinguish between a thin dense film and a thick sparse film. To see if molecules contract or unfold upon a binding 
event, the physical thickness of the layer needs to be extracted independently. To do so, many of the refractive 
techniques assume that the refractive index of the layer has a constant value over the time of the experiment. Since the 
refractive index has a direct relation to the volume density of a particular layer, it is clear that when molecules change 
their conformation, this refractive index can change just as much as the thickness can. Assuming a certain refractive 
index would in this case induce errors on the extracted thickness. Other techniques grow a large number of layers and try 
to fit the measurement results to simulations in order to extract the parameters of a single film5, or try to extract both 
thickness and refractive index independently by using several discrete wavelengths6 to probe the film, introducing errors 
due to dispersion.  

The technique we propose to extract both thickness and refractive index simultaneously is a Silicon-on-Insulator (SOI) 
microring resonator which is excited by a quasi-TE and a quasi-TM mode.  Both modes interact differently with the thin 
molecular layer and via careful data analysis both parameters can be disentangled7. Since the optical modes only extend 
into the exterior of the optical core for about 100 nm, they are especially appropriate to study interface interactions or 
any events that happen close to the surface. This is usually the region where traditional surface techniques such as 
ellipsometry and AFM are blind to due to high noise. In8 it is stated that the adsorption of polyelectrolyte layers to the 
surface has an interesting first region close to the surface which behaves different than a bulk polymer, and consequently 
difficult to analyze with existing techniques. In this article we showcase the possibility of the sensor by resolving the 
thickness and refractive index of a thin stack of polyelectrolytes comprising of a polyethyleneimine (PEI) layer, a 
poly(sodium-4-styrene sulfonate) (PSS) layer and a poly(allylamine) hydrochloride (PAH) layer, in its native wet 
condition.  

2. DUAL POLARIZATION MICRORING SENSOR 
2.1 Sensing of the molecular layer 

The microring sensor being presented here is a rectangular wire waveguide in a racetrack resonator configuration. Next 
to the resonator an access waveguide is located in close proximity to couple the light in and out of the resonator. The 
optical chip on which several microrings reside, each with its own input and output coupler, is fabricated with 193 nm 
deep UV lithography9. The 2D cross section is a silicon rectangle of 220 nm high and 520 nm wide, that rests on a 
silicon dioxide box. These dimensions make sure the waveguide supports a fundamental quasi-TM mode and a 
fundamental quasi-TE mode. Since these modes are quasi-orthogonal the interaction with the adsorbed polymer layer is 
quite different. The electric field of the TM mode is not continuous across the top interface of the waveguide, extending 
the evanescent tail further in to the aqueous cladding than the TE mode. This is illustrated in Figure 1. 

 
 

Figure 1. Electric field profile of a quasi-TE and a quasi-TM mode in the horizontal center of the 2D waveguide cross 
section, as a function of the vertical coordinate. For both polarizations, only the dominant electric field component in the 
2D cross section is shown. 
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Figure 2(a) and 2(b) show the measured (loaded) Q-factor and the extinction ratio (E.R) of a TE mode, while Figure 2(c) 
and 2(d) show the Q-factor and the extinction ration of a TM mode of a microring resonator with an access waveguide
width of 290 nm and a ring waveguide width of 520 nm, as a function of the gap in the directional coupler. For 
molecular sensing, a Q factor over 5000 is advisable, while the E.R. should not be less than 5 dB. For the TE mode, we 
see that for gaps smaller than 120 nm, the E.R. is adequate but the Q factor drops, indicating that the loss of the TE mode 
in the ring is too high due to too much coupling in the coupling section. For small gaps it is also not guaranteed that the 
gap is completely etched, increasing coupling even further. For a gap of 140 nm (and higher), we see that there are no TE 
modes at all. For these gaps, the spatial overlap of the electric fields can no longer compensate the phase. On Figure 2(c), 
we see that there are no appropriate TM modes for gaps smaller than 120 nm. The lower Q-factor of the TM modes in 
Figure 2(d), compared to those of TE mode in Figure 2(b) is due to the larger water absorption for TM mode. When we 
combine both workable regions for TE and TM, only rings with a gap of 120 nm are adequate for sensing. We find that 
the ring with a coupling length of 1 µm performs best. The sizes of the gap as mentioned in Figure 2 are the dimensions 
as put on the lithographic mask. For small gaps, the printed gaps can be quite different from the ones on the mask. We
can conclude that the design window that allows us to excite both a TE and a TM mode simultaneously with one 
coupling section is relatively small.  

2.3 Extracting the thickness and the refractive index from the wavelength shifts 

The measurement setup allows us to track the change of the wavelength of both the TE and the TM mode of the 
microring resonator simultaneously. Both depend independently on the thickness t and the refractive index n of the
bound layer of polyelectrolytes. In order to extract t and n, we require a set of equations that link the wavelength shifts to
these independent quantities. Via the equations of Maxwell and perturbation theory, the following set of equations can be 
found:  ∆ߣ(݊, (ݐ = ܤ (݊ − ݊)	݊	 ݂(ݐ, ݊)1 + ݊ଶ ݂(ݐ, ݊) + ݊ଶ ݂(ݐ, ݊) 
Here, nb denotes the bulk refractive index of the cladding fluid while the functions fb and fp and the constant B can be
determined with the help of simulation package Fimmwave. The cladding fluid is the fluid which is present above the
polyelectrolyte layer. These functions are highly dependent on the waveguide width (W) and height (H). Since the
deviation due to fabrication on both W and H is too high to obtain accurate results, a calibration has to be performed with
each sensor prior to the experiment. To obtain the correct width and height, water is flowed over the waveguide and the
free spectral range of both modes is measured. Due to a high linearity of both modes in either W or H, these can be
determined accurately with a 3σ error of 96 pm on W and 26 pm on H. The mathematical model, the solving procedure
and the calibration protocol are described in more detail by Hoste7. In the experiment that follows the bulk fluid does not 
have to be calibrated for, since we use water. 

2.4 Evaluating the influence of noise on the resolution 

Several sources of noise cause an uncertainty on the determination of the wavelength of the resonance mode, translating
eventually to a minimal detectable thickness and refractive index of the polyelectrolyte layer. There is noise stemming 
from the measurement setup itself, such as noise on the wavelength of the laser exciting the microring and shot noise and
thermal noise coming from the infrared detector. Secondly there is temperature noise and refractive index noise of the
fluidics. There is also a noise contribution coming from fitting the discrete spectrum to a Lorentzian lineshape and
extracting the exact position of the resonance.

An estimate of the combined effects of most of these noise factors on the position of the wavelength can be measured 
experimentally by flowing a fluid at a steady rate over the sensor array, tracking the wavelength of the resonance over 
time and determining the standard deviation on a linear curve, to correct for time dependent drift. There are however 
noise factors that are dependent on the analyte and the buffer, such as local variations in concentration, which differ from 
experiment to experiment. To quantify the noise of our system, we have flowed phosphate buffered saline (PBS) at 30 
µl/min over the sensor array for 11 minutes, gathering 47 resonant wavelengths per mode. We have experimentally
obtained this noise as 220 fm for the TM mode and 246 fm for the TE mode. This is in good agreement with the noise 
determined for a TE mode for a similar microring and lithographic fabrication process9. To determine the error in (t,n), 
the wavelength shifts for a protein layer with n=1.41-1.45 RIU and t=2-9 nm are simulated, on which Gaussian 
wavelength noise with 220 fm standard deviation for both modes is superimposed. The average error for a waveguide 

(2)
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