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ABSTRACT 
Despite ever increasing computational power, recognition and classification problems remain challenging to 
solve. Recently advances have been made by the introduction of the new concept of reservoir computing. This is 
a methodology coming from the field of machine learning and neural networks and has been successfully used in 
several pattern classification problems, like speech and image recognition. The implementations have so far been 
in software, limiting their speed and power efficiency. Photonics could be an excellent platform for a hardware 
implementation of this concept because of its inherent parallelism and unique nonlinear behaviour.  

We propose using a network of coupled Semiconductor Optical Amplifiers (SOA) and show in simulation 
that it could be used as a reservoir by comparing it on a benchmark speech recognition task to conventional 
software implementations. In spite of several differences, they perform as good as or better than conventional 
implementations. Moreover, a photonic implementation offers the promise of massively parallel information 
processing with low power and high speed. 

We will also address the role phase plays on the reservoir performance. 
Keywords: photonic reservoir computing, integrated optics, semiconductor optical amplifiers, nonlinear optics, 

optical neural networks, speech recognition 

1. INTRODUCTION 
Although computers and algorithms are becoming ever stronger and more powerful, there are problems that are 
not easily solved with an algorithmic approach. Speech and image recognition are among them, while humans 
seem to have a natural ability for such tasks. This has inspired the fields of machine learning and Artificial 
Neural Networks (ANN) where people try to build systems suited for this class of problems and where they often 
take models of the human brain as an inspiration. ANNs consist of a network of nodes and interconnections 
between these nodes, just as neurons in our brain are connected to many other neurons. The nodes itself perform 
a function which can be as easy as applying a tangent hyperbolic or as complex as a model approximating the 
behaviour of biological neurons.  

What sets ANNs apart from algorithms is the fact that they are, just as humans, trained to perform a task. 
The training is done through learning by example. In a simplified manner this training takes the following form. 
We want the ANN to distinguish between different classes of data (e.g. different words in speech). Examples are 
obtained and ideally sufficient examples of every class are used. Every example consists of a certain input and 
a desired output that is expected from the ANN. In our case the learning will be supervised, which means that an 
external observer is involved in judging the performance of the output of the ANN. Part of the examples is fed to 
the ANN and the output is monitored. Ideally the output should be the same as the desired output, and therefore 
the interconnection strength between the nodes (or interconnection weight) is changed until the output of the 
ANN is as close as possible to the desired output. The second part of the examples, which differ from the 
examples used for training, is then used to evaluate the trained ANN. If the training was done well, then the 
ANN should perform as good on the unseen data of the test set. In this case we say that the ANN generalizes 
well, which means that it has learned to distinguish between the different classes that the examples are samples 
from and not just between the examples itself. 

Feed-forward Neural Networks, which have no feedback and are structured in layers, have been studied for 
a long time and are used for a number of applications. The lack of feedback makes that there is just a mapping 
from input to output and several well established training rules for the adaptation of the weights exist. The 
drawback is that they lack memory needed for many real world applications which have temporal behaviour 
such as speech recognition. Recurrent Neural Networks (RNN) do have feedback connections but their use 
remained problematic for a long time due to reasons as slow or non-convergence during training.  

Reservoir Computing (RC) is a new training concept for RNNs, introduced a few years ago, that combined 
the advantages of both recurrent and feed forward neural networks [1,2]. In this framework a RNN is used but 
left untrained and we will call it the ‘reservoir’. The state of all the nodes of the RNN is then fed into a linear 
readout, which can then be trained with well established methods. Here as well, training means adapting certain 
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connections strengths, but only within the readout, not within the reservoir.  The interesting properties of RNNs 
and its associated memory are maintained, while the training remains easy because linear methods can be used.  

Although the reservoir itself remains untrained, this does not imply that any reservoir will do. Rather, from 
experiments and experience it turns out that most reservoirs perform differently in different dynamical regimes, 
but best on the edge of stability, i.e. the region in between stable and unstable to chaotic behaviour. This region 
is determined by the total amount of gain and loss in the network. A measure often used is the spectral radius, 
the largest eigenvalue of the interconnection matrix. At zero input it is an indication of the stability of the 
network. If its value is larger than one, the network will be unstable. Intuitively this can be understood because 
over time this connection matrix will be applied again and again. If one of its eigenvalues is larger than one, then 
there is gain in the overall network, which will eventually result in unstable behaviour. In classical reservoirs 
based on tangent hyperbolic functions, the spectral radius is often used as a measure to create a network that is 
on the edge of stability for good performance, i.e. with a spectral radius just below one. It is important to 
mention that this measure is just an indication since it is only valid for linear functions and for zero input. For 
non-zero input and nonlinear functions stable behaviour can also happen for spectral radii larger than one. 

2. PHOTONIC RESERVOIR COMPUTING 
The idea of RC is actually very broadly applicable and many different types of reservoirs are currently being 
investigated. One way of interpreting the reservoir and the readout function is to view the reservoir as a special 
and advanced kind of pre-processing or filtering of the input before the readout function. In this view, the 
reservoir essentially mixes the inputs together, so that the interesting features are more easily extracted by the 
readout. A nonlinear mixing often seems to offer advantages over linear mixing when dealing with more 
complicated problems such as speech recognition. 

Most implementations so far have been software based, hence the pursuit of finding a suitable hardware 
platform for performing the reservoir calculation. This transition offers the potential for huge power 
consumption savings and speed enhancement. What makes a hardware implementation even more attractive is 
the fact that the computation in RC happens through the transient states and changing dynamical behaviour. This 
is in sharp contrast with digital computation where the state is only important after the transients have died out.  

Photonics seems like a very interesting candidate of building a reservoir, because it has a range of different 
nonlinear interactions working on different timescales. It also offers the promise of being more power efficient. 
There remain, however, many challenges as well. If you encode the information in changing power levels, then it 
becomes difficult to have negative weights and to subtract signals. A topology made on a 2D chip, which is the 
case for most photonic chips nowadays, limits the freedom in connectivity that exists in software 
implementations, since one would like to minimise the number of crossings. When using a coherent light source, 
the amplitude and accompanying phase start to play a role as well, whereas traditional RC is only amplitude 
based. In this paper we will show through simulation results that despite these limitations, photonic reservoirs 
can perform quite well on benchmark problems. 

3. SIMULATION RESULTS 

In this section the speech recognition task that we used as a benchmark problem will be described, as well as the 
model we used to simulate a photonic reservoir. In our case the reservoir consists of a network of coupled 
Semiconductor Optical Amplifiers (SOAs).  

3.1 Speech Recognition 
Speech recognition is a very difficult problem to solve and methods based on ANNs have been among the state 
of the art for a long time. Reservoir Computing with classical neural networks has been employed with success 
for speech recognition. The speech recognition that we have used in this paper is about digit recognition, zero to 
nine, uttered by 5 female speakers ten times. The dataset and simulation framework for classical reservoirs is 
publicly available and can be found here: http://snn.elis.ugent.be/rctoolbox. As is standard for speech 
recognition, some pre-processing of the raw speech signal is performed before it is fed into the reservoir. Often 
these methods involve a transformation to the frequency domain and highlighting certain frequencies typical for 
our ear by using some kind of ear model. The model used for the results in this paper was the Lyon ear 
model [3].  

Audio signals are rather slow and in our simulation we fed the speech signal at much higher speeds to the 
photonic reservoir, at timescales typical for the delays in a network of SOAs. One of the reasons is that the 
relation between the time scales of the reservoir and those of the input is important [4]. This made the duration 
of an average sample in the order of a few hundred ps. So although we use this task to demonstrate the potential 
of photonic reservoir computing, we don’t propose to use photonic reservoir as a platform for standard real-time, 
slow audio signals.  
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3.2 Simulation model 
SOAs with their saturation of the gain and output power are the optical device closest to the tangent hyperbolic 
functions used in many ANN implementations. That is the reason we chose them as a first medium to verify the 
usefulness of photonic reservoirs. The SOA model we used is one proposed by Agrawal [5]. It captures the most 
important features such as gain saturation, carrier lifetime and phase shift depending on the gain. Spectral hole 
burning, cross gain and phase modulation were not considered, since the operation is set to be at one wavelength. 

A time step based rate equation model, solved by a fourth order Runge-Kutta, of a network of coupled SOAs 
was then plugged into the freely available RC toolbox mentioned earlier. This toolbox offers a number of 
reservoir simulations and benchmark problems that can be simulated and tested. Furthermore almost every 
aspect of it can be changed to make it suitable to specific experiments.  

 
Figure 1. The topology used for the SOA simulations. 

3.3 Results 
In these experiments the input consists of 77 channels at every time step. These channels are the result of the 
pre-processing of the speech data. Therefore we have chosen are network large enough. All the experiments 
were done with a network of 81 nodes. An example of the topology used can be seen in Fig. 1. There a network 
of 3 by 3 SOAs is shown. The connections are made in such a way that they don’t cross. The information flows 
from the top left to the bottom right SOAs with nearest neighbour connections. The feedback is assured by 
having as many feedback connections on the edges of the network as possible without having to use crossings. 
The topology we used was a 9 by 9 network but the construction method was the same. 

In the experiment we varied two variables: the phase change and attenuation in every connection. Although 
in practice these wouldn’t be the variables that are swept, they are orthogonal and therefore provide an 
interesting insight in the behaviour of the network. In reality the input current of the SOAs and the wavelength of 
the light can be used, but since the input current of the SOAs influences the gain, which in turns influences the 
amount of phase change inside an SOA, these variables are not orthogonal.  

The total amount of gain and loss in the network is also calculated by means of the spectral radius, mentioned 
earlier. Since coherent light is used, the signals can be represented by complex amplitudes. It is therefore 
important that the weights in the interconnection matrix, used for the calculation of the spectral radius, are the 
weights for these complex signals and not for their intensity. In this way interference effect are accounted for. 

An example of a result of such an experiment is shown in Fig. 2. Here a clear transition at a spectral radius 
around 1 can be seen. Above 1 the results become suddenly a lot worse and this is due to the fact that instability 
kicks in because there is gain in the network. This regime actually corresponds with one where some SOAs 
would become lasers. Our simulation model is probably not suited for addressing a network of coupled lasers, so 
it is not possible to state with certainty that this regime is very bad for RC. Maybe some kind of emergent 
behaviour, useful for RC, could arise from coupled lasers, but this is the topic of ongoing investigation.  

Another consequence of using coherent light is that the delay in the connections changes the phase of the 
light according to the wavelength, length and the effective index of the connection. All the connections were 
considered equally long in this experiment, which means that the phase change in every connection can be 
changed at the same rate, for example by changing the wavelength. Phase is important, since it determines the 
interference of the light when it combines in front of every SOA. Looking at Fig. 2, it becomes clear that the 
network performs better for some phase changes or interference. The optimal result for this task was a Word 
Error Rate (WER), which is the percentage of the words incorrectly recognized, of about 1%.  This is 
comparable to the results achieved by classical tangent hyperbolic networks, although the performance of both 
software and photonic reservoirs could be improved when a low-pass filter is added to all of the nodes.  

From Fig. 2 it becomes apparent that the phase is very important to the performance of the reservoir. Phase is 
much more sensitive than gain, so it is important go have an optimal region that is as vast as possible for phase. 
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This can be understood because for a small optimal region, a small phase change can be enough to lose your 
optimal performance. A lot of ongoing investigation is about finding networks with large optimal areas (making 
them phase ‘independent’). An easy way of doing this is working with incoherent light, but the results are typical 
a lot worse for incoherent networks. 

 
Figure 2. Simulation result for a network of coupled SOAs for speech recognition. The x-axis shows the spectral 

radius, the y-axis the phase change in every connection. The darker the colour, the better the performance. 

4. CONCLUSIONS 
In this paper we have investigated a network of coupled SOAs as a reservoir for RC by means of evaluating this 
kind of reservoir on a benchmark speech recognition task. It turns out that SOA reservoirs can be used to solve 
such kind of complex problems, despite the limitations imposed by a practical implementation. In the future, 
a practical demonstration of a chip of SOAs used as a photonic reservoir will be further pursued. 

ACKNOWLEDGEMENTS 
K. Vandoorne acknowledges the Special Research Fund (BOF) of Ghent University for a specialization grant. 
This work has been carried out in the framework of the IAP project Photonics@be of the Belgian Science Policy. 

REFERENCES 
[1] H. Jaeger,  H. Haas: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless 

communication, Science, vol. 304, pp. 78-80, Apr. 2 2004. 
[2] W. Maass, T. Natschlager, H. Markram: Real-time computing without stable states: A new framework for 

neural computation based on perturbations, Neural Computation, vol. 14, pp. 2531-2560, Nov. 2002. 
[3] R. Lyon: A computational model of filtering, detection and compression in the cochlea, in Proc. IEEE 

ICASSP, Paris, May 1982, pp. 1282-1285.  
[4] D. Verstraeten, PhD thesis: Reservoir Computing: Computation with Dynamical Systems, in PARIS, Dept. 

of Electronics and Information Systems Ghent: Ghent University, 2009. 
[5] G. P. Agrawal, N. A. Olsson: Self-phase modulation and spectral broadening of optical pulses in 

semiconductor-laser amplifiers, IEEE Journal of Quantum Electronics, vol. 25, pp. 2297-2306, Nov 1989. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier ()
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <>
    /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


