SILICON PHOTONICS: FROM RESEARCH TO MANUFACTURABLE PRODUCTS

R. Baets, S. Selvaraja, G. Roelkens, S. Scheerlinck, P. Dumon, W. Bogaerts, D. Van Thourhout
Photonics Research Group, Ghent University — IMEC, INTEC-department, B-9000 Gent, Belgium
Email: roel.baets(@ugent.be

Abstract: The use of wafer-scale CMOS technologies holds great promise for the fabrication of high
performance and high complexity photonic integrated circuits at moderate cost. In this paper we discuss some of

the key challenges to make this promise come true.

1. INTRODUCTION

In the last decade, silicon photonics has gained
substantial importance in the field of photonic
integration. This is because of the combination of a
very high index contrast (and thus strong potential
for miniaturization) and the compatibility with
CMOS fabrication technology.

Silicon nanophotonic waveguides can strongly
confine light in a submicron waveguide core,
allowing sharp bends and compact components. This
allows for a dramatic reduction in footprint, which in
turn enables larger-scale integration of photonic
components. The attractiveness of silicon photonic
wires also comes from the possibility of leveraging
the industrial fabrication base of electronics. The
fabrication of photonic circuits can be done with the
same tools used for making CMOS-circuits. At the
same time this CMOS-compatibility opens up
interesting options for the integration of photonic
functions with electronic functions, another key
advantage of silicon photonics.

In this paper we address some of the key issues to
be resolved in order to move from research to
industrial manufacturing of silicon-based photonic-
electronic ICs. These include manufacturing accuracy
and reproducibility, wafer-level testing, integration
with electronic circuitry and foundry access.

2. MANUFACTURING ACCURACY

The patterning of Silicon-on-Insulator based
photonic devices in a CMOS environment is done by
means of a combination of deep UV lithography tools
and etching steps (possibly complemented by
metallization, implantation etc.). While high index
contrast brings great benefits for miniaturization it
has a downside too: the dimensions of a waveguide
need to be accurate down to the nm-level. In
principle fabrication errors can be compensated by
either trimming or tuning, but the extent by which
that needs to happen should be minimized. A
geometric accuracy (and reproducibility) at the level
of a few nm is challenging — but feasible - for optical
lithography processes operating at a wavelength of
193 nm.

Optical lithography has evolved with downsizing
of the transistors in electronic circuits, bringing
advanced functionalities for accurate pattern

definition and uniformity. Using advanced
manufacturing  tools, namely 193nm optical
lithography and dry etching, we have achieved sub-
nm device uniformity. In any interferometric
photonic device the waveguide geometry has an
impact on the spectral response, hence controlling
them is an absolute necessity. While the thickness is
largely decided by the SOI wafer manufacturer (and
process), the width is strictly controlled by the
patterning process. In a 200mm wafer, we have
achieved linewidth uniformity (standard deviation) of
2nm and 2.6nm after optical lithography and dry
etching respectively. The fabrication process is
developed to achieve high accuracy in combination
with good reproducibility.
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Fig.1 Non-uniformity of two ring resonators,
which are 25um apart.

There are two non-uniformities which are
important for manufacturability: within chip and chip
to chip uniformity. The device uniformity within a
chip and between chips is tested by measuring
wavelength  selective  devices (Mach-Zehnder
interferometer and ring resonator). We have achieved
an average spectral non-uniformity of ~0.4nm and
~1.5nm within a chip and between chips respectively
[1]. Non-uniformity as low as 20pm (Fig.1) was
obtained for devices which are placed 25um apart.
This value is better than the uniformity achieved
using e-beam technology [2].  Fig. 2 shows the
transmission spectrum of 12 identical (by design)
MZI's from 3 chips in a 200mm wafer. Our
characterization shows a correlation between non-
uniformity and placement of the devices: the larger
the distance between the devices, the higher the non-



uniformity. Variation in the shorter length scale (um)
is largely influenced by pattern loading and optical
lithography, while wafer thickness and dry etch
process influence longer length scale (mm).
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Fig.2 Chip to Chip non-uniformity of 12 MZI’s
Jrom 3 chips

3. WAFER-LEVEL TESTING

Testing of photonic circuits can add considerably
to their cost. Therefore there is a need for automated
measurement tools that can test photonic circuits at
the wafer-level, i.e. before dicing. This requires an
approach whereby there is an out-of-plane optical
access to the on-chip waveguides. This can be done
either through the use of diffractive grating couplers
integrated in the chip or by means of fiber probes
with a grating integrated on the fiber tip. In the first
case the grating coupler can not only be used for
testing but also for packaged optical fiber access to
the chip. That calls for couplers with low coupling
loss and wide bandwidth. In the second case coupling
efficiency is less critical and brings the extra asset of
being able to probe the interior of complex circuits.

High efficiency on-chip grating couplers can be
realized in several ways. The design of high
efficiency  grating  couplers comprises  the
optimization of the directionality of the diffraction
grating (the ratio of the power diffracted towards the
optical fiber to the total diffracted optical power from
the grating) and the optimization of the coupling
length of the diffraction grating, since one needs to
interface with a 10um diameter single mode optical
fiber [3]. Uniform diffraction gratings result in an
exponentially decaying diffracted field profile, which
limits the overlap between the diffracted field and the
Gaussian optical fiber mode to 84% (assuming
perfect directionality of the grating). Optimization of
the directionality of the grating can be achieved by
defining a mirror below the waveguide grating to
redirect the downwards diffracted power towards the
optical fiber. Both a gold bottom mirror [4] and a
DBR bottom mirror (comprising alternate Si and
SiO; layers) can be used [5]. The phase difference
between the upwards diffracted beam and the
redirected beam needs to be well controiled in order
to obtain constructive interference. This way 69%

coupling efficiency between a standard single mode
fiber and a silicon waveguide was realized [4]. An
alternative approach to realize high directionality is
to intrinsically modify the diffraction properties of
the grating, by optimizing the silicon waveguide
layer grating cross-section. A silicon overlay, defined
on the silicon waveguide layer prior to grating
definition as shown in figure 3, allows to achieve
nearly perfect directionality. This silicon overlay can
be amorphous, poly-crystalline or crystalline silicon.
Experimentally 55% coupling efficiency was realized
in this way [6]. However, optimization of the
processing conditions promises to improve this
number up to 8§0%.

Uniform grating defined in
Silicon overlay

Fig. 3 SEM picture of a high efficiency grating
coupler by defining a silicon overlay prior to grating
definition

The alternative approach for wafer-scale testing is
through the use of fiber probes with a grating on the
fiber tip, brought in close proximity to the on-chip
waveguides. We designed and fabricated gold grating
fiber probes for silicon-on-insulator nanophotonic
circuits. Due to the large refractive index contrast
between the gold and the waveguide materials, strong
diffraction will occur when light is incident on the
grating, even when the grating is very thin {71
Unlike grating couplers integrated in a chip, fiber
probes offer a high degree of flexibility for testing. In
particular, two probes allow to verify whether light
can flow between any two points in a circuit while at
the same time the spectral properties of the optical
path established between those two points can be
addressed.

Gold grating fiber probes were fabricated in a
rather straightforward manner by a nanoimprint-and-
transfer technique [8], as shown in fig. 4. 10 x 10um
gold gratings with a grating period of 630 nm were
transferred from a mold to a single-mode fiber with a
polymer as an intermediate layer. This technique
allowed for alignment of the grating with respect to
the fiber core and control of the angle between the
grating plane and the fiber axis in order to maximize
the coupling efficiency without suffering from
second order Bragg reflections. 15% coupling



efficiency between a gold grating fiber probe and a
220nm x 3um SOI waveguide was obtained at a
wavelength of 1545 nm with a [dB bandwidth of
38nm. Testing of an integrated SOI ring resonator
using two probes was experimentally demonstrated.

Fig.. 4. (a) Microscope image of the fiber probe
Jacet containing 10 x 10 um gold gratings. (b) SEM
picture of the fiber facet. The middle grating is
aligned to the fiber core. (c) Detail of the grating,

4. INTEGRATION WITH ELECTRONICS

While die-level technologies, such as flip-chip
mounting, provide a viable solution for integration of
photonics and electronics in some applications, there
is a strong push towards wafer-scale integration
technologies. There are three main approaches to
achieve this each with their pros and cons. The
photonic functions can be integrated in the electronic
layer or they can be fabricated above CMOS by
means of back-end processes or they can be built on
a separate wafer which is then integrated with the
electronic wafer. Here we discuss the two latter
approaches.

Taking advantage of the layered approach of
CMOS  fabrication processes, building photonic
circuits on top of CMOS circuits is a straightforward
approach. As the photonic circuit layer has to be
fabricated above the CMOS metallization the
temperature of the fabrication process is restricted
below 400°C.

Plasma enhanced chemical vapor deposition
allows us to deposit low-loss amorphous silicon (a-
Si) below 400°C [9,10] . We have achieved a
propagation loss of 3.5dB/cm and 1.7dB/cm for a-Si
photonic wires (450X220nm) and shallow etched
ridge waveguide respectively (Fig. 5) [11]. From
these measurements we have extracted a material loss
of 0.7dB/cm. The deposition temperature is kept at
300°C to enable back-end CMOS compatibility.

The stability of a-Si:H over time and with respect
to subsequent processing steps is important. Different
environmental parameters such as temperature and
pressure can change the film property. We have tested
the stability by depositing silicon dioxide top
cladding at 400°C, and we did not observe any
change in the propagation loss. The stability (shelf
life) of the film over time showed no change. Using
our a-Si we have fabricated basic wavelength
selective devices, such as ring resonators and MZI’s
(Fig. 6). These characterizations demonstrate the

feasibility of using a-Si as waveguide medium in
electronic-photonic integration.

Furthermore, a-Si opens a wide range of photonic
devices, such as multilayer circuits and devices.
Tunable thickness, low temperature, doping and,
multi layer staking can open a wide range of
application for a-Si.
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Fig. 6 Transmission spectrum of an a-Si MZI.
Another approach to integration of photonic and

electronic functions is to decouple the fabrication of
the photonics and electronics, by processing them on
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separate wafers, and join them together at the final
stage of the foundry process. For this purpose, a 3-D
integration technology can be used, where photonic
dies can be integrated on top of photonic wafers, or
vice-versa. Using Cu-nail through-silicon vias (TSV),
which can be arranged with pitches of 10m,
thousands up to millions of interconnects between
integration layers are possible [12]. This is
conceptually shown in fig. 7. By choosing for die-to-
wafer integration, this approach can improve yield by
selecting only known-good dies for bonding [13].

5. ACCESS TO FOUNDRIES

Access to advanced CMOS fabrication facilities -
with processes optimized for photonic devices - is
non-trivial both at the research and the manufacturing
level. To this end an initiative has been taken to
organize a Multi-Project-Wafer service for silicon
photonics through which users can have their designs
fabricated in a cost-sharing mode.

This service runs under the name of ePlXfab
(www.epixfab.eu). Three times a year, a multi-project
wafer run is scheduled to which users can sign up
with one or multiple designs. ePIXfab checks and
integrates the designs into CMOS masks. The designs
are then jointly fabricated in a single process flow.
By sharing the expensive CMOS masks as well as the
processing costs between 10 to 15 users, the cost of
research and prototyping with CMOS technology is
made affordable.

ePIXfab aims to set up a system for fabless silicon
photonics, where a full food chain is available from
design and fabrication to packaging and testing.
Complemented by training of designers from
academia and industry on design for the available
technologies, the barriers for fabless access will be
greatly reduced so that the transfer from R&D to
products is made considerably easier.
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