PYTHON:

BATTERIES INCLUDED

Python in Nanophotonics Research

The authors describe how they use Python for nanophotonics research—specifically, they
describe using it for electromagnetic modeling, mask design, and process simulation.

n our photonics research group at Ghent
University, we’re very active in the field of
nanophotonics, which takes a complex optical
system the size of a large table and shrinks it
so that it fits onto a photonic chip of a few mm?.
Miniaturization and integration have done wonders
for electronics in the past few decades, and the
hope is that a similar strategy can work for pho-
tonics, too, leading to highly performant optical
chips for fields as diverse as high-speed telecom-
munications, optical computing, and biosensors.
The electronics industry has spent billions of
dollars perfecting fabrication technology in silicon,
so it seems like a smart idea to piggyback on their
mature processes for photonics applications. This
is why our group is working on photonic structures
made in silicon-on-insulator, which we’re fabricat-
ing with the same state-of-the-art deep-UV litho-
graphy that produced the latest computer chip.
These structures are typically less than a micron in
size and can guide light along narrow waveguides,
make very tight bends, or squeeze light into ex-
tremely small volumes.
In getting to a working device, however, we face
several challenges and rely heavily on Python to
overcome them.

Challenges and Advantages
A first step for any photonics research involves fig-

1521-9615/07/$25.00 © 2007 IEEE
Copublished by the IEEE CS and the AIP

PETER BIENSTMAN, LIEVEN VANHOLME, WIM BOGAERTS,
PIETER DUMON, AND PETER VANDERSTEEGEN

Ghent University

uring out how light behaves in complicated struc-
tures. For our particular studies, we use an in-house-
developed Maxwell solver (http://camfr.source
forge.net). Its core is written in C++, and it uses a few
legacy Fortran routines, but its interaction with our
simulator (to define the structure to be simulated, the
quantities to be calculated, and so forth) happens via
Python scripts, glued to C++ via Boost.Python. This
C++ library makes it easy to expose C++ code to
Python, is very powerful, and provides support for
advanced C++ options. Its drawback, though, is that
compilation times and memory requirements can be
quite heavy. Figure 1 shows an example of a
nanolaser’s optical field, as calculated with our elec-
tromagnetics solver CAMFR.

Using Python
Once we come up with a good design, we still have
to fabricate it, which involves designing a mask.
Python scripts can help us define these masks: be-
cause Python is a full-fledged programming lan-
guage, it’s easy to parameterize the design or create
repetitive structures using loops. Once the mask is
finished, we place it in a deep-UV stepper to pro-
ject the design on a photosensitive resist spun on a
silicon wafer. Unfortunately, the pattern that ends
up on the wafer isn’t the same as the one on the
mask, due to the projected light’s diffraction, pecu-
liarities in the etching process, and so forth. To get
around this, we used NumPy or SciPy to write a
process simulator that can calculate various effects.
As Figure 2 illustrates, Python can take us from
electromagnetic design to mask layout and process
technology simulation. This ability also lets us
close the loop and, for example, recalculate the
electromagnetic properties of the actual resulting
geometry as predicted by the technology simula-

46

THIS ARTICLE HAS BEEN PEER-REVIEWED.

COMPUTING IN SCIENCE & ENGINEERING

tor, compare it to the nominal design, and make
some modifications and precorrections, if needed.

All Python tools have a single aspect in common:
they must be able to handle a structural definition
(in terms of geometric primitives). For our re-
search, we designed a generic class library that deals
with geometric prototypes and creates a “little”
language on top of Python to define a structure
(such as the one in Figure 3):

air = Material(1l) # Air has a refrac-
tive index of 1.

mat = Material(3) # Our material has a
refractive index of 3.

g = Geometry(air) # Air is the back-
ground material.

Now add some shapes.

g += Rectangle(Point (0.0, 1.0),

Point (2.0, 2.0), mat)

g += Triangle (Point (2.0, 2.0),

Point (2.0, 1.0), Point (3.0, 1.5), mat)
g += Circle (Point (4.5, 1.5), 0.5, mat)

Although we could probably implement similar ap-
proaches in different languages, Python’s increased
productivity makes it a very attractive option for us.

e’re currently extending and for-
malizing the definition of our
“little” language, such that it will
be powerful enough to use as in-
put for our Maxwell solver and to automatically
generate a mask description from it. We also plan
to write a wrapper around other third-party simu-
lation software, such that these generic structure
definitions can be used as inputs for a wide variety

of tools. S

Peter Bienstman is an associate professor at Ghent Uni-
versity, Belgium. His research interests include nanopho-
tonics and scientific computing. Contact him at Peter.
Bienstman@UGent.be.

Lieven Vanholme works in the Photonics Research Group
at Ghent University. His research interests include pro-
gramming and physics. Contact him at Lieven.Vanholme@
UGent.be.

Wim Bogaerts is a postdoc in the photonics group at
Ghent University. His research interests include silicon
nanophotonics. Contact him at Wim.Bogaerts@UGent.be.

Figure 1. Optical field in a nanolaser, as calculated
by our electromagnetics solver CAMFR.

Structure of interest

Electromagnetic simulation

Mask layout

Simulated lithography

- Actual lithography

Figure 2. Python in the process.

0,0)

Figure 3. Example of a simple geometry.

Pieter Dumon is a PhD student in electronic engineering
at Ghent University. His research interests include simula-
tion and fabrication of silicon nanophotonic components.
Contact him at Pieter. Dumon@UGent.be.

Peter Vandersteegen is a PhD student in the photonics
group at Ghent University. His research focuses on or-
ganic LEDs and simulation methods. Contact him at Pe-
ter.Vandersteegen@UGent.be.

May/JuNe 2007

47

