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Confinement Factors and Gain in Optical Amplifiers
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Abstract—A new identity is derived which relates the gain of perturbation. That is, one can reasonably assume that the
and the field distribution (or confinement factor) in a dielectric  transverse field distribution in the active waveguide is very
rvavegunde _‘g"tg comdplexfrefractlve_(ljndlceg.hThls |dei)r_1t|ty is valid - gimilar to that in the passive waveguide. The calculated field
or any guided mode Of waveguliaes with an ar |trary Cross . . . . . -
section. It provides a new check of the accuracy of mode solvers. dlstrlbutlgn and the ensueing confinement or f|II|ng factors .for
Also, it can be used in a variational approach to predict the gain the passive waveguide can then be used to obtain an estimate

or loss of a guided mode based on knowledge of confinementof the modal gain of the active waveguide. An often used
factors. It is shown that a previous analysis that is often used, is approximation for planar waveguides is
not correct. In addition, approximate expressions for the gain in
slab waveguides are presented. Gmod & erzgi (1)
T

Index Terms—Polarization, semiconductor device modeling,
semiconductor laser amplifiers, traveling-wave amplifiers, wave- whereg,,.4 is the modal gain, ang; is the plane wave bulk
guide theory. material gain or absorption of thh layer. The sum is over
all layers that make up the waveguide. The confinement factor
. INTRODUCTION I+ is defined as

HE SUPPRESSION of polarization sensitivity in semi- LS Ji (S (z, y))| de dy

conduc_tor traveling-wave _amphflers (TWA’s) has re- ¢ ffooo|<5z($7y)>|d$ dy
cently received a lot of attention [1], [2], [3]. In order to
study this, a so-called modal analysis of the device is need®fth (S-(z,y)) the time-averaged-component of the Poynt-
In recent papers, the authors have investigated guided motés vector, and with the integral in the numerator over the
in planar dielectric waveguides with gain and losses [4]-[7ith layer. Often the bulk material gain in the active layer is
In semiconductor TWA’s, the material gain in the activéhuch larger than the bulk absorption in the cladding layers.
region due to carrier injection introduces an additional positiJ@ that case it suffices to use a single confinement factor,
imaginary part to the index of refraction [8]. Likewise, losseBamely that of the active layer. Approximation (1) was derived
in the cladding layers are represented by a negative imagin& Adams under the assumption of weak guiding [11]. In
part of the refractive index. In the present paper we studjat case, it suffices to use a scalar theory rather than a
the relation between Optica| confinement and modal gain Yﬁctor theory. An alternative derivation, also within the scalar
Waveguides of arbitrary cross section. regime, is given by Buus [8] AlthOUgh both authors Clearly

For active linear waveguides (i.e., with complex-valuegtress these limitations, (1) is used in very many papers,

indices of refraction) there exist two kinds of methods to obtakiithout questioning whether it is valid for the configuration
the modal gain. The first ones are the indirect approximad@der consideration. It has recently been pointed out for one-
methods, such as the effective index method [9] or variatior@imensional (1-D) (i.e., planar) waveguides that expression (1)
methods [10], which use results for the corresponding passifiecertain cases of practical importance highly overestimates
waveguide (with real-valued refractive indices), to predict tH8€ gain for TM modes [5]. The explanation is that this
modal gain of the active configuration. Since the imaginagPProximation is based on the wave equation for TE modes.
part of the refractive index in the active waveguide is typicallput TM modes satisfy another wave equation and hence the

small compared to the real part, it can be considered as a klf§#tion between modal gain and bulk gain is different (and
more complex) for them [12].Nevertheless, it is possible to
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dispersion equation solvers [4]. For planar configurations,
the accuracy of these complex mode solvers can be tested
by checking if the obtained field distributions and effective
permittivities satisfy certain identities [5]. It would be useful to
have such an identity which can be used to check the accuracy
of the calculated modal gain and the field distribution of two-
dimensional (2-D) waveguides. It is the aim of this paper to
derive such an identity and to compare it with approximate
expressions published earlier. We also show how this identit
can be used to obtain approximate expressions for the gain o
planar waveguides.

Il. GAIN AND CONFINEMENT IN 2-D WAVEGUIDES

x
Az v J;—):

The theorem of Poynting or power theorem [15], [16]
for monochromatic fields (i.e., with a time-dependence of
exp[jwt]) for a linear medium whose total electromagnetigirg- 1 ; An active _Semicgngu‘%tﬁr ‘lfvar‘]’tGQUide Witth an ?ﬁbitfawtg_f’tesst_se‘?“O”-

. . P -4.ne active region Is shaded. e lignt propagates In the posi ction
response is characterized by a permittivity and a permeabiljty, complex propagation constart.. The planesA and B are both
reads perpendicular to the-axis.

/ / (E x H*) - ndS
s decaying there. For the guided modes that we consider the

- /// (jwe'E - B* — jwuH - H*) dV. (3) total power flow takes place only in thedirection. Hence,
v the surface integral in (3) reduces to

Here,* denotes complex conjugation and o o
—/ (E x H") -izda:dy—l—/(E xH*)-i.dxdy (8)
A

imaginary unit; PO
/ (B x ) -nds
angular frequency; s

permittivity; = (exp[—2aAz] — 1)/ (ExH*) i, dedy. (9)
i = permeability. -

E = electric field strength; 5

H = magnetic field strength; wherei. = (0,0,1). For guided modes the fact¢ks x H*)
n = outward unit normal of the surfac; increases by a factexp[—2aAz] between planet and plane
V = volume that is bounded by the surfage B [see (7)]. So the surface integral of (3) equals

J

W

€

To include the effects of losses and gain, it is assumedethat Smc?.the?’ conflgburathn 'S |nq:psndher:t fotle volume
is a complex parameter, that is integral in (3) can be written, with the help of (5), as

e=¢é —jd" (d,deR). 4) jw/(e*ﬁ)-ﬁ)* —uH-HY)dV
v
The real part’ accounts for dispersion, whereas the imaginary . zo+Az e -
part ¢ is responsible for absorption or gain. = Jw/ exp[—2az] dz/A(6 |E|" — plH|") dx dy
=]

Consider now an active waveguide with arbitrary cross (10)
section, i.e.g = ¢(z,y) (see Fig. 1). We study guided modes .
which propagate in the positive-direction, i.e., electric and = _Jw(exp[—2aAz] -1 / (¢*|E|? = u[H|?) dzx dy
magnetic field distributions that are of the form 2o A

{E.H}(z,y,2) = {E,H}(¢,9) exp[—jk.z]  (5)

wherek., which is to be determined, is the complex propag
tion factor of a particular mode. That is,

(11)

where we have sefy, = 0. From now on we restrict ourselves
% the important case of semiconductor waveguides, i.e. we
sety. = po, the permeabilityin vacuo. Substituting from (11)

k:=p—-jou (B,a€R). (6) and (9) into (3) then gives us
Th dal gai length unit th | L
e modal gain per length unit then equals _2a/ (B x %) i du dy
9mod = —2a. (7) A
TakeV in (3) to be a volume between the two planésnd 3 = jw/ (¢E)* - p|H[?) dz dy — w/ ¢'|E|? dz dy.
defined asr = 2y and z = 2 + Az, respectively (see Fig. 1). A A (12)

The other boundaries &f are chosen far away from the active
region, so that we may assume the fields to be exponentidilgxt, we introduce the time-averaged power flow vector for a
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guided mode at a cross sectienas Using that
. —k* -
1 " T+ —2az ey 7y
(8(2,9,2)) = HRe{B(x,y) x H' ()} 7> (13) He = G a7
- . gives
Combining the real parts of (12) and (13) gives
/" r 2 k% ffooo 6;/|Ey|2daj
_w [u (@ y)|E(@, ) dedy (14) a:?ﬁm (18)
— o0 Yy

4 JA(S(xv Y, Z)> ‘1, dz dy
Lo ()| Ele, y)2 de dy where we used that2 = w?jigeq With ky the wavenumbein
e [ (B(oy) x H(w0)7) 0. dody (15) vacuoande, = ¢/co = ¢, — je,'. Letn = n’ — jn” denote the
2 A ’ ’ # index of refraction then, since. = n?, we havec” = 2n/n".
This identity, together with Eq. (7), states that the modal gak®t neir = neg — jncy be the effective index of a given mode.
is proportional to the ratio of the integrated electric field energlye know that [19]
de_nsity|]§}(a:, y)_|2 of a guided mode weighed wiif, and the max{nl} < nlg < n' . (2). (19)
guided mode time-averaged power flow across any transverse . ] ]
cross sectiond of the active waveguide. It holds for anyHere:max{ng,,} is the maximum value of’ of the cladding

k . )
guided mode of any two-dimensional waveguide. Note thiYers andi, () is the maximum value of the real part of

¢ — e(x,y), i.e., (15) is valid for waveguides with an arbitrary € Pulk refractive index in the waveguide. Sinée= kor.g,
refractive index profile. (18) becomes

One possible application lies in checking the accuracy of ko ffooo n’n”|Ey|2dx
a complex 2-D mode solver which is used to analyze e.g., @= nlg foo |Ey|2 de
ridge or channel configurations. Also, the spurious solutions . . - .
that some mode solvers generate will not satisfy (15) and cafliS rigorous expression for the gain holds for any TE mode
hence be identified. Another way of using it is in a variationd]l an arbitrary slab waveg/wde. / .
approach as was sketched in Section I. The field and powerhc we now assume that.; ~ n' (weak guiding approx-

flow distributions that are needed can then be approximated'Bgﬁtion' cf. [8]), then for a slab waveguide With. piecewisel
homogeneous layers, (20) reduces to the following approxi-

the results from a mode solver that can analyze 2-D structurr%g1 tion

with real-valued refraction indices. Expression (15) then yields

an approximation of the modal gain. In fact, if one uses the o™ mko Yy niTTE (21)
@

field distribution for the corresponding passive configuration,
then (15) reduces to a perturbative expression suggestedife the suffixi indicates the layer, and the confinement

=¥
T4

(20)

Vassallo [17]. factor I''E is defined as

We note without proof that the expression (15) is stationary, .
S0 its use in a variational analysis is indeed justified. The proof [TE _ Jlayeri |7y 22)
is not given here since it is very similar to the one given by ! ffooo |Ey|? dz

Harrington [10]. In case of a TM polarized field, the only nonzero field

It should be noted that (15) implies that we cannot Calcma{%mponents arél,, £, and£.. From (13) and (15), we have
the modal gain in terms of the fraction of the Poynting vector v - '

that is confined to the active layer. In other words, the term lRe{E x H*} i, = lRe{E H}. (23)
s 2 . . . 2 Z 2 Tty

¢’|E(x,y)|*, which appears in the numerator is, generally

speaking, not proportional to the power flow. The erroneo#dso,

view that the modal gain is proportional to the confined ~ we* i o4
fraction of the power flow is widely held. It was propagated y o o T (24)
in, e.g., [9], [18].

We eliminateﬁly because an expression for the TM gain in

lll. GAIN VERSUS CONFINEMENT terms of that field component becomes rather convoluted, as
RELATIONS FOR PLANAR WAVEGUIDES it also contains its derivative. Substituting from (23) and (24)
For planar waveguides, i.e., with the permittivityan piece- into (15) gives

wise constant function of only, the analysis can be carried B2+ a? f°° e”(|E,;|2 + |EZ|2) dx

i iald is i a= = - . 5
out further. Assuming that the field is independenypit can 2 [~ (@ftoa)Ealds (25)
be either TE or TM polarized. We first consider the former e 5
case. The only nonzero field components are thgnH,. and Using that in practicer’ < 32, |’a| < |€8] and |E.|? <
H.. From (15), we have |E.|? gives

* ¢'\E,|*dx 3 [ €'E,|? dx

4 1Re{ [ —E,H:dz} “70 J2 B de
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