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Confinement Factors and Gain in Optical Amplifiers
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Abstract—A new identity is derived which relates the gain
and the field distribution (or confinement factor) in a dielectric
waveguide with complex refractive indices. This identity is valid
for any guided mode of waveguides with an arbitrary cross
section. It provides a new check of the accuracy of mode solvers.
Also, it can be used in a variational approach to predict the gain
or loss of a guided mode based on knowledge of confinement
factors. It is shown that a previous analysis that is often used, is
not correct. In addition, approximate expressions for the gain in
slab waveguides are presented.

Index Terms—Polarization, semiconductor device modeling,
semiconductor laser amplifiers, traveling-wave amplifiers, wave-
guide theory.

I. INTRODUCTION

T HE SUPPRESSION of polarization sensitivity in semi-
conductor traveling-wave amplifiers (TWA’s) has re-

cently received a lot of attention [1], [2], [3]. In order to
study this, a so-called modal analysis of the device is needed.
In recent papers, the authors have investigated guided modes
in planar dielectric waveguides with gain and losses [4]–[7].
In semiconductor TWA’s, the material gain in the active
region due to carrier injection introduces an additional positive
imaginary part to the index of refraction [8]. Likewise, losses
in the cladding layers are represented by a negative imaginary
part of the refractive index. In the present paper we study
the relation between optical confinement and modal gain in
waveguides of arbitrary cross section.

For active linear waveguides (i.e., with complex-valued
indices of refraction) there exist two kinds of methods to obtain
the modal gain. The first ones are the indirect approximate
methods, such as the effective index method [9] or variational
methods [10], which use results for the corresponding passive
waveguide (with real-valued refractive indices), to predict the
modal gain of the active configuration. Since the imaginary
part of the refractive index in the active waveguide is typically
small compared to the real part, it can be considered as a kind
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of perturbation. That is, one can reasonably assume that the
transverse field distribution in the active waveguide is very
similar to that in the passive waveguide. The calculated field
distribution and the ensueing confinement or filling factors for
the passive waveguide can then be used to obtain an estimate
of the modal gain of the active waveguide. An often used
approximation for planar waveguides is

(1)

where is the modal gain, and is the plane wave bulk
material gain or absorption of theth layer. The sum is over
all layers that make up the waveguide. The confinement factor

is defined as

(2)

with the time-averaged-component of the Poynt-
ing vector, and with the integral in the numerator over the
th layer. Often the bulk material gain in the active layer is

much larger than the bulk absorption in the cladding layers.
In that case it suffices to use a single confinement factor,
namely that of the active layer. Approximation (1) was derived
by Adams under the assumption of weak guiding [11]. In
that case, it suffices to use a scalar theory rather than a
vector theory. An alternative derivation, also within the scalar
regime, is given by Buus [8]. Although both authors clearly
stress these limitations, (1) is used in very many papers,
without questioning whether it is valid for the configuration
under consideration. It has recently been pointed out for one-
dimensional (1-D) (i.e., planar) waveguides that expression (1)
in certain cases of practical importance highly overestimates
the gain for TM modes [5]. The explanation is that this
approximation is based on the wave equation for TE modes.
But TM modes satisfy another wave equation and hence the
relation between modal gain and bulk gain is different (and
more complex) for them [12].1 Nevertheless, it is possible to
use a different definition for the confinement factors so that (1)
again gives a satisfactory prediction of the modal gain for both
polarization states while still using the results of the passive
waveguide [6], [7].

The second kind of method to calculate the modal gain
is what we call the direct method. Contrary to the above
mentioned indirect methods, these directly analyze the active
waveguide with complex refractive indices. Examples are
complex beam propagation methods [13], [14], and complex

1The fact that TM solutions satisfy a wave equation that differs from that
for TE was also noticed by Huanget al. [12]. However, the authors make
a mistake between their (8) and (9) by discarding the finite delta function
contributions to the integral that they are considering.
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dispersion equation solvers [4]. For planar configurations,
the accuracy of these complex mode solvers can be tested
by checking if the obtained field distributions and effective
permittivities satisfy certain identities [5]. It would be useful to
have such an identity which can be used to check the accuracy
of the calculated modal gain and the field distribution of two-
dimensional (2-D) waveguides. It is the aim of this paper to
derive such an identity and to compare it with approximate
expressions published earlier. We also show how this identity
can be used to obtain approximate expressions for the gain of
planar waveguides.

II. GAIN AND CONFINEMENT IN 2-D WAVEGUIDES

The theorem of Poynting or power theorem [15], [16]
for monochromatic fields (i.e., with a time-dependence of

) for a linear medium whose total electromagnetic
response is characterized by a permittivity and a permeability
reads

(3)

Here, denotes complex conjugation and

electric field strength;

magnetic field strength;

outward unit normal of the surface;

volume that is bounded by the surface;

imaginary unit;

angular frequency;

permittivity;

permeability.

To include the effects of losses and gain, it is assumed that
is a complex parameter, that is

(4)

The real part accounts for dispersion, whereas the imaginary
part is responsible for absorption or gain.

Consider now an active waveguide with arbitrary cross
section, i.e., (see Fig. 1). We study guided modes
which propagate in the positive-direction, i.e., electric and
magnetic field distributions that are of the form

(5)

where , which is to be determined, is the complex propaga-
tion factor of a particular mode. That is,

(6)

The modal gain per length unit then equals

(7)

Take in (3) to be a volume between the two planesand
defined as and , respectively (see Fig. 1).
The other boundaries of are chosen far away from the active
region, so that we may assume the fields to be exponentially

Fig. 1. An active semiconductor waveguide with an arbitrary cross section.
The active region is shaded. The light propagates in the positivez-direction
with complex propagation constantkz . The planesA and B are both
perpendicular to thez-axis.

decaying there. For the guided modes that we consider the
total power flow takes place only in the-direction. Hence,
the surface integral in (3) reduces to

(8)

where . For guided modes the factor
increases by a factor between plane and plane

[see (7)]. So the surface integral of (3) equals

(9)

Since the configuration is independent of, the volume
integral in (3) can be written, with the help of (5), as

(10)

(11)

where we have set . From now on we restrict ourselves
to the important case of semiconductor waveguides, i.e. we
set , the permeabilityin vacuo.Substituting from (11)
and (9) into (3) then gives us

(12)

Next, we introduce the time-averaged power flow vector for a
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guided mode at a cross sectionas

(13)

Combining the real parts of (12) and (13) gives

(14)

(15)

This identity, together with Eq. (7), states that the modal gain
is proportional to the ratio of the integrated electric field energy
density of a guided mode weighed with , and the
guided mode time-averaged power flow across any transverse
cross section of the active waveguide. It holds for any
guided mode of any two-dimensional waveguide. Note that

, i.e., (15) is valid for waveguides with an arbitrary
refractive index profile.

One possible application lies in checking the accuracy of
a complex 2-D mode solver which is used to analyze e.g.,
ridge or channel configurations. Also, the spurious solutions
that some mode solvers generate will not satisfy (15) and can
hence be identified. Another way of using it is in a variational
approach as was sketched in Section I. The field and power
flow distributions that are needed can then be approximated by
the results from a mode solver that can analyze 2-D structures
with real-valued refraction indices. Expression (15) then yields
an approximation of the modal gain. In fact, if one uses the
field distribution for the corresponding passive configuration,
then (15) reduces to a perturbative expression suggested by
Vassallo [17].

We note without proof that the expression (15) is stationary,
so its use in a variational analysis is indeed justified. The proof
is not given here since it is very similar to the one given by
Harrington [10].

It should be noted that (15) implies that we cannot calculate
the modal gain in terms of the fraction of the Poynting vector
that is confined to the active layer. In other words, the term

, which appears in the numerator is, generally
speaking, not proportional to the power flow. The erroneous
view that the modal gain is proportional to the confined
fraction of the power flow is widely held. It was propagated
in, e.g., [9], [18].

III. GAIN VERSUS CONFINEMENT

RELATIONS FOR PLANAR WAVEGUIDES

For planar waveguides, i.e., with the permittivitya piece-
wise constant function of only, the analysis can be carried
out further. Assuming that the field is independent of, it can
be either TE or TM polarized. We first consider the former
case. The only nonzero field components are then, and

. From (15), we have

(16)

Using that

(17)

gives

(18)

where we used that with the wavenumberin
vacuoand . Let denote the
index of refraction then, since , we have .
Let be the effective index of a given mode.
We know that [19]

(19)

Here, is the maximum value of of the cladding
layers and is the maximum value of the real part of
the bulk refractive index in the waveguide. Since ,
(18) becomes

(20)

This rigorous expression for the gain holds for any TE mode
in an arbitrary slab waveguide.

If we now assume that (weak guiding approx-
imation, cf. [8]), then for a slab waveguide with piecewise
homogeneous layers, (20) reduces to the following approxi-
mation

(21)

Here, the suffix indicates the layer, and the confinement
factor is defined as

(22)

In case of a TM polarized field, the only nonzero field
components are and . From (13) and (15), we have

(23)

Also,

(24)

We eliminate because an expression for the TM gain in
terms of that field component becomes rather convoluted, as
it also contains its derivative. Substituting from (23) and (24)
into (15) gives

(25)

Using that in practice and
gives

(26)
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(27)

Neglecting the term with in the denominator and using
again the assumption that gives for a slab waveguide

(28)

where the confinement factor is defined as

(29)

So we find both for TE and TM polarization that with a suitable
choice of the confinement factors an estimate for the modal
gain can be obtained. Note that neither (21) nor (28) involves
the power flow. This is in agreement with our earlier results
[5], where the starting point was the wave equations for TE
and TM rather than the complex power theorem. The present
analysis is much simpler, and also suggests the use of
rather than for the TM confinement factor. As remarked
above, an expression for the TM gain in terms of is also
possible but becomes very complex since it also contains the
derivative of that field component.

As is discussed in [5], confinement factors that do involve
the Poynting vector can give unacceptable results for TM
polarized waves under typical circumstances. This point can
be illustrated with the following numerical example. Consider
a symmetric waveguide with and

. The core thickness was chosen as 0.1
m, the wavelength in vacuum was 1.3 m. The TM

gain according to a mode solver [4] was 23.22 cm. This
is in excellent agreement with (28), which predicts a value
of 23.34 cm . However, it is in stark contrast to (1), which
yields a value of 31.36 cm , more than 35% too high.

IV. CONCLUSION

An identity was derived which relates the field distribution
(or optical confinement) and the modal gain in semiconductor
waveguides. The relation is valid for waveguides of arbitrary
cross section. Also, this expression is stationary, so it can be
used in a variational approach. Starting point was not (as in
previous work) the wave equations, but the complex power
theorem. It was shown that the gain of guided modes cannot
be expressed, as is often thought, in terms of the fraction of
the power flow that is confined to the active region.

A rigorous expression and two approximations for the gain
in planar (i.e., slab) waveguides were obtained. It was found
for that case too that these formulae are in terms of certain
electric field components rather than the Poynting vector. It
was shown that an approximation based on the power flow can
become highly inaccurate, in contrast to the approximations
that are suggested by the authors.
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