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Abstract'.  
We fully characterize the stationary spatial gap soliton in periodic planar waveguide through 
the measurement of the transverse phase evolution across the soliton beam. 
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In a 2-D geometry when the refractive index is modulated in one direction (x), the diffraction relation of 
electromagnetic waves, which relates the longitudinal component of the wave vector (k~) to the transverse 
one (kx)  is split up by forbidden bands (photonic band gap). When a Kerr-type nonlinearity is present, 
the periodic medium supports spatial gap solitons in the form of a bound state of two beams of different 
propagation angle. These solitons are analogous to temporal gap solitons in I-D periodic media [1]. Spatial 
gap solitons can be simply excited by the superposition of two beams (called the forward and backward 
beam) at the input of a periodic planar waveguide. Therefore, unlike the temporal gap soliton, a stationary 
gap soliton (with zero transverse velocity with respect to the grating) can be generated. This generation 
requires two beams of the same power and opposite incident angles both equal to the Bragg angle in such a 
way that their interference pattern approches the index pattern of the periodic waveguide (see Fig.l.a). 

Recently this stationary gap soliton has been observed in semiconductor planar waveguide [2] and in 
photorefractive crystals [3]. In these experiments the gap soliton has been identified only through the 
characteristic self-confinement of the constituting beam pair. However a gap soliton is much more that a 
simple self-confined state akin to standard Kerr-type soliton. Indeed, the gap soliton constitutes a two- 
parameter family of solutions in which one of the parameters, called detuning, measures the position of the 
soliton spectrum with respect to the gap of the linear structure. This parameter ~ also determines the 
phase profile ~(x) of the gap soliton. This phase profile represents physically the phase difference between 
the soliton field oscillations (i.e., the beating pattern of the constitutive beams) and the transverse index 
modulation of the waveguide. 

In our work we perform precise measurements of the phase profile ~(x), which allowed us to determine 
the value of the detuning parameter ~ of the gap soliton. We provide in this way a complete experimental 
characterization of the stationary gap soliton. 

Our experiment has been performed with laser beams propagating in a periodic planar A1GaAs waveguide 
that exhibits a self-focusing Kerr nonlinearity at 1.55 pro. The periodicity is obtained by means of a 4pro 
grating etched on the top face of the 1.6pro-thick guiding layer (see Fig.l.a). Around the Bragg wave 
number kB -- 7c/d where d is the grating period, the electromagnetic field g ( x , z )  - 1/2(E+C (~0~+kB*) + 
E_C(3°~-k~))e- i~t+c.c .  is ruled by the nonlinear coupled mode equations that describe the evolution of 
slowly varying envelope of forward (E+) and backward (E_) beams near the Bragg angle 0B -- asin(27r/AkB) 
where A is the wavelength in the vacuum [1]" 

cOE+ kB cOE+ 
= i~E_ + i~( E+I ~ + 21E_ ~)E+, 

Oz /% oz 
OE_ kB OE_  
Oz ~o Oz = i , {E+  + i'~(IE_ 2 + 21E+ 2)E_, (1) 

where n is the coupling constant that describes the effect of the grating on the propagation and 7 is the 
waveguide Kerr nonlinearity coefficient. 
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Fig. 1. a) Planar  periodic structure: a=2  pm, d = 4 p m ,  b) Band diagram based on Eq.1 in linear regime. 

In the linear propagation regime (i.e. for 7 = 0) the coupled mode equations show that Bragg reflection 
on the periodic structure opens a photonic band gap that separates the diffraction relation in two bands. 
This is shown in the Fig.l.b where we plotted the band structure calculated on the basis of Eq.1 for 7 = 0. 
Around the Bragg angle, this model is equivalent to the Floquet-Bloch analysis for a cosine refractive index 
modulation. The propagation direction of each mode is given by the normal to the diffraction relation 
curve (see the arrows in Fig.lb) and the diffraction coefficient is determined by the curvature of this curve. 
Therefore, when one beam is incident on the structure, it excites modes on the two bands and these modes 
will travel in opposite direction, as indicated by the black arrows in Fig.l.b [4]. 
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Fig. 2. a) Intensity profile at the output  of a 16 m m  long planar periodic waveguide for one incident beam. 
The angle 0 refers to the input angle in the waveguide, b) Lateral  shift at the output  for Bloch modes on 
the first band (+) .  The solid line shows the theoretical shift based on the diffraction relation plotted on 
F ig . l .b  ( t ~ -  10300m-1). 

This characteristic feature has been observed at the output of our 16 mm-long sample by launching in 
the waveguide a single laser beam with a width of 80 pm at a wavelength of 1.55 pro. At this wavelength the 
Bragg angle is 11.2 ° in air (3.4 ° in the waveguide). Figure 2.a shows the evolution of the output intensity 
profile with input angle. We clearly see that  for small angles the lateral shift of the beam at the output 
evolves linearly with the input angle as in an homogeneous medium. On the other hand, near the Bragg 
angle the propagation is affected by the grating: the propagation angle in the periodic medium decreases 
as the input angle increases, moreover the input beam excites modes on the first and the second band. At 
the Bragg angle this two modes travels in the same direction. This allows us, in particular, to identify very 
accurately the Bragg angle. For Bloch mode on the first band, we plotted the lateral shift at the output 
as a function of the input angle (see Fig.2.b). Comparison between experimental results and theoretical 
predictions based on the diffraction relation enables us to deduce the coupling constant n=10300m -1 which 
appears in Eq.1. The knowledge of this value is essential for the measurement of the detuning parameter ~. 

When we take into account the nonlinearity (7 ¢ 0), gap solitons are solutions of Eq.1 [5]. As mentioned 
above, these solutions are characterized by two parameters 1 < ~, < 1 and 0 < ~ < 7r. The first one (~,) 
is related to the the soliton transverse velocity, i.e. the angle of propagation of the soliton in the periodic 
structure. It depends on the relative intensity between the forward and the backward beams and vanishes 
when these intensities are equals. In that  latter case the soliton travels in the z direction and does not move 
across the index modulation. This is the analogous of the stationary soliton in fiber Bragg gratings. The 
parameter determines the soliton width, height, and spectrum and plays the role of a detuning parameter. 
When ~ --+ 0 the soliton is wide, the power is low and the spectrum is near the lower branch of the gap. 
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Fig. 3. Output  intensity profile at low (a) and high (b) power when a stat ionary soliton is formed, c) 
Evolution of the phase of the intensity maxima towards the grating in the case of Fig. a) (+) and Fig. b) 
(o). The solid line shows the theoretical phase profile for a stat ionary gap soliton with ~b -- 0.27. 

Conversely, a narrow soliton with a spectrum close to the upper branch corresponds to ~b near 7r. Moreover 
as regards the stat ionary soliton, the periodic pat tern  is out of phase with respect to the grating in the 
center of the soliton beam for all power, while in the wings of the beam, the relative phase reaches rr + ~b. 
Therefore we see that  even if we cannot measure directly the position of the soliton spectrum in the band 
gap, the phase evolution across the soliton beam profile allows us to determine the detuning parameter  that  
fully characterizes the stat ionary gap soliton (z, = 0). 

In our experiment, we excite a stat ionary gap soliton by the superposition of two beams at the Bragg 
angle as was done in Refs 12, 3]. The relative phase between these beams is adjusted so that  in the linear 
regime we excite a Bloch mode on the lower branch of the difraction relation. In order to measure the index 
profile to retrieve the soliton phase profile, we launch in the waveguide a wide beam at normal incidence. At 
the output,  this beam is slightly modulated by the grating and maxima coincide with the index modulation. 

Figure 3.a shows the intensity profile at the output  of a 4ram-long periodic waveguide, at low power. 
Due to the effect of diffraction induced by the grating, the Bloch mode expends up to 100pro FWHM. At 
high power (see Fig.3.b) the beam focuses in the structure and a stat ionary gap soliton is formed with a 
60 pro-width. As can be seen on Fig.3.b, the evolution of the phase shift between the intensity pat tern  and 
the index modulation is almost flat in the center of the beam, which means that  we excite a Bloch mode of 
the periodic structure. On the other hand, the phase evolves across the soliton profile. This evolution is the 
one of a gap soliton characterized by a detuning parameter  ~b = 0.22 as shown by the solid line. Moreover 
the theoretical soliton width for this value of the detuning parameter  is 55 pm in fully good agreement with 
the experiment. 

In conclusion we fully characterize a stat ionary gap soliton by measuring its transverse phase profile. A 
theoretical fit of the measured profile gave us a value of the detuning parameter  ~b that  is in good agreement 
with the other soliton parameters  such as its width and its intensity. 
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