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A method based on Yeh's rigorous 4 % 4 matrix algebra and a fast perturbation-theory-based method are pro-
posed for modeling and optimization of an integrated magneto-optical (MO) waveguide isolator. The trans-
verse MO Kerr effect in ferromagnetic CogFeyy is used to design the integrated isolator. Waveguide losses
introduced by absorption in the MO metallic film are compenzated for by optical gain in an InP-based semi-
conductor optical amplifier with a tensile strained multiple-quantum-well (MQW) active region.  The desired
device isolation, which originates from the nonreciprocity of the transverse MO effect, is obtained by operation
of the device under appropriate corrent injection, leading to zero modal net gain in the forward direction while
the device remains lossy in the backward direction. In the approach based on Yeh's matrix formalism, phe-
nomena such as the MO effects described by anisotropic permittivity tensors, waveguide losses in absorbing
layers, and optical gain in the active layer are explicitly included. Numerical aspects of the resonant eondi-
tion solution for waveguide modes are discussed.  In the perturbation theory method, the MO nenreciprocal
waveguide effects are calculated in a first-order scheme. The general models are applied in an example of a
realistic InP-based MQW isolator with a CogFe;y MO layer, indicating that practical isolation ratios are
achievable within reasonable levels of necessary material gain. Rigorous and perturbation models are com-
pared, and good agreement is obtained. This result indicates that first-order perturbation theory modeling of
integrated magneto-optics is accurate enough, even for devices that employ MO materials with relatively

strong Voigt parameters. © 2005 Optical Society of America

OCIS codes: 230.3240, 2303810, 130.3120.

1. INTRODUCTION

To ensure stable emission of a semiconductor laser, an op-
tical isolator is needed to prevent undesirable backreflec-
tions, The nonreciprocity of magneto-optical (MO} effects
hecomes a basis of such devices. Despite the fact that
traditional free-space bull isolators are cheap and com-
pact devices with strong isolation ratios up to 60 dB, ex-
pensive submicrometer alignment techniques are needed
to incorporate these components into the laser package,
This requirement has an effect on the total cost of a com-
mercial lager diode. Moreover, the integration of a big di-
versity of optical functions on a single chip, as is expected

to oceur in future photonie integrated cirenitz for all--

optical signal processing, underlines the need for an inte-
grated optical isolator. Integration also increases the
thermal and mechanical stability of the device, requires a
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smaller saturation magnetic field, and permits a high
level of integration with low insertion loss.

The development of an integrated optical waveguide
isolator has therefore been a subject of intense research
for the past decades.'™® Several designs have been sue-
cessfully experimentally demonstrated. Stand-alone
waveguide isolator devices have been reported with isola-
tion ratios up to 30 dB.™* However, the majority of inte-
grated izolator designs have been based on the same ma-
terials as those used in their bulk free-space
counterparts, i.e., rare-earth ferrimagnetic iron garnets
(RE;Fe;045).  These materials are transparent and show
sufficiently strong Faraday rotation in the wavelength
range of optical telecommunication. However, the inte-
gration of this garnet system with traditional III-V semi-
conduetor substrates has faced great technological diffi-
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culties. The most popular technique encountered
nowadays to integrate these garnet-based materials with
InP substrates makes use of direct bonding of wafers.*1"

A completely novel approach to integration of optical
nonreciprocity in a semiconductor photonic integrated cir-
cuit was theoretically suggested a few years ago.'"'? The
approach is based on inducing the transverse magneto-
optic Kerr effect'® in a standard InP-based semiconductor
optical amplifier (SOA) by replacing the traditional Au-
based electric metal contact with a transversely magne-
tized MO metal contact, which will result in a nonrecip-
rocal gain-loss behavior for the TM modes of this active
device. Unlike garnet-based integrated isolators, this in-
tegrated isolator can be directly monolithically integrated
with standard active InP-based devices. Furthermore,
ferromagnetic MO metals (such as Col'e alloys) can easily
be sputter deposited onto ITI-V semiconductors. There-
fore this device is a potential candidate for a cheap, toler-
ant, and easy to fabricate monolithically integrated opti-
cal izolator,

In this paper modeling and optimization of such a SOA
isolator is discussed. In Section 2 the basic operation of
the device is described. The key properties needed for
successful experimental fabrication of the device are indi-
cated. In Section 3 the theoretical background of the two
modeling approaches is elaborated, and specific aspects of
their numerical implementation are discussed. In Sec-
tion 4 both methods are numerically compared by means
of a hypothetical benchmark example and a realistic MO
isolator structure,

2, NOVEL CONCEPT

The most popular designs for integrated MO waveguide
isolators base their operation on a transverse MO nonre-
ciprocal phase shift. Unlike the better-known MO Fara-
day rotation that is employed in traditional bulk free-
space isolators, this effect does not induce nonreciprocal
coupling between the two independent polarization states
of the guided modes but rather introduces a nonreciprocal
{or, in other words, a direction-dependent) correction to
the propagation constant of the guided modes. A magne-
tization parallel to the layer interfaces and perpendicular
to the direction of propagation of the light (transversal
MO confipuration) will induce a nonreciprocal phase shift
in the TM ( p-polarized) modes, whereas the propagation
behavior of the TE (s-polarized) modes will remain recip-
roeal, [t is important to note that there is no simple con-
figuration of the magnetization that would permit a
polarization-independent nonreciproeal phase shift.

If the MO material is lossless (as it is for iron garnets),
this phase shift will be purely real. Counterpropagating
TM modes will undergo an opposite phase change. It is
obvious that one can exploit this effect to fabricate a non-
reciprocal Mach-Zehnder interferometer, which would
lead to constructive interference in the forward direction
and to destructive interference in the backward direction.
This principle is popular in garnet-based integrated
waveguide isolators.* %%  However, as was pointed out
in Section 1, the experimental success of attempts at in-
tegrating these garnet-based integrated isolators with
III-V semiconductor substrates has remained limited.”
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The main reason for this seems to be the technological dif-
ficulties posed by the wafer bonding techniques and the
problems in achieving uniform magnetization of the gar-
net layers.'®

A novel concept for integrating optical 1solation in a
photonic IC, as proposed by Takenaka and Nakano!! and
by Zaets and Ando,'” is based on exploiting the imaginary
part of the transverse MO Kerr effect for lossy MO mate-
rials. The best-known examples of such materials are
the ferromagnetic transition metals and their alloys with
nonnegligible real parts of the off-diagonal permittivity
tensor elements. In the presence of transverse magneti-
zation the effective extinction coefficients of a MO wave-
guide are different for forward and backward guided TM
modes.'® Isolation behavior is directly obtained by the
difference in optical propagation loss of the forward and
the backward modes. The magnitude of the phase shift
is of course related to the amount of guided light that
overlaps the lossy MO layer. Because there is easily an
order-of-magnitude difference between the isotropic opti-
cal constants and the nonreciprocal MO constants of the
various MO metals, it is clear that without additional loss
compensation the device would be just an academic curi-
osity. Therefore the main idea of the novel concept is to
combine the strong imaginary MO phase shift of ferro-
magnetic metals with a standard amplifying I1I-V semi-
conductor optical amplifier. In this way, one would
achieve not only a way of compensating for the residual
forward losses but at the same monolithie integration of
optical nonreciprocity with InP-based active eomponents,
A schematic representation of the deviee is depicted in
Fig. 1.

It is clear that experimental success for this device de-
pends heavily on two important achievements: a high-
guality ferromagnetic MO metal-semiconductor interface
with acceptable optical, MO, magnetic, and electric prop-
erties, and a high-quality active semiconductor gain re-
gion. The former requirement is a consequence of the
triple functionality that the MO metal needs to fulfill: It
has at the same time to be a good ohmic contact for the
underlying SOA, to be a good permanent magnet in the
transverse direction (and thus to show sufficiently strong
magnetic in-plane anisotropy), and to possess a strong
MO constant in the optical telecom wavelength range of
1300-1600 nm. Successful experimental evidence that
these requirements can be met was previously reported!”;

fransversally magnetized
farromagnetic metal contact

polyimide current isolation
thin InP buffer layer
tensile strained MQW active

layer
X
v

Fig. 1. Schematic of a two-dimensional cross section of a MO in-
tegrated isolator. A nonreciprocal gain shift originates from the
transversal MO effect in a ferromagnetic metal film (M), Wave-
guide losses by the absorbing metal films are compenzated for by
optical gain in a MQW active region separated by an InP spacer
layer. Both sides of the MO stripe waveguide are separated
from the injection current by a polyimide isolating layer.
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Fig. 2. Multilayer structure of the waveguide and the coordi-
nate system chosen.

the ferromagnetic MO metal in those experiments was a
sputter-deposited 50-nm thin film of CogFe,, alloy.

The need for a high-quality, high-gain active semicon-
ductor region for compensation of forward loss requires
optimized epitaxial growth of a tensile-strained multiple-
quantum-well (MQW) layer. The need for tensile strain
in the quantum wells (QWs) of the gain region is a direct
consequence of the fact that a nonreciprocal MO trans-
verse phase shift will influence only TM guided modes.
TE waveguide modes will retain their reciprocal behavior.
Therefore, unless the gain region of the underlying SOA
structure provides strong gain discrimination between TE
and TM polarization, any TE light that is present, which
originated from spontaneous emission in the SOA or was
generated by external sources, might undermine the op-
eration of the device by adding noise to the output signal
or even by saturating the gain performance of the MOQW
region. It is well known that one can tune the polariza-
tion selectivity of semiconductor gain by growing the @Ws
with a slight lattice mismatch and thus incorporating
strain., Growing the QWs under tensile strain will lift
the light-hole valence band above the heavy-hole valence
band and thus faver TM light transitions in the active
region.'® Optimization of the epitaxial growth conditions
has led to reports of a suitable tensile-strained MOQW ae-
tive region with TM modal gains that exceed 150 em~11®
The experimental successes described above have re-
cently led to the experimental demonstration of an inte-
grated isolator that incorporates this novel concept. ™!

3. THEORY

Waveguiding in a MO integrated isolator represents the
problem of propagation of light in an anisotropic
multilayer structure. In this paper a waveguide is rep-
resented as a system of A"homogeneous layers separated
by planar interfaces at x = x,, n = 0,1, ..., N. The
coordinate system is chosen as follows (see Fig. 2): the x
axis is perpendicular to the interfaces, xz is the plane of
incidence, and the z axis corresponds to the forward
waveguiding direction. Note that this coordinate system
is often used in integrated optics,” but it is different from
that which is usually used in magneto-optics.™ The field

vectors are assumed to have expl jot) dependence, which -

corresponds to a monochromatic wave solution. The nth
layer of thickness t, is sandwiched between interface
planes x = x, yandx = x,, ¢, = x,.; — x,. The lay-
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er’s medium is completely charaéter:ized by a relative per-
mittivity tensor ¢, whereas the magnetic permeability
a'™ is set to its vacuum value.

Boundary conditions for propagation of light in aniso-
tropic multilayer structures are usually resolved by the
compact matrix method?*?® In Subsection 3.A, Yeh's
matrix algebra is elaborated for the general case of aniso-
tropic multilayer waveguide structures. The general ap-
proach is then applied for transverse MO waveguides, ie.,
those that contain layer(s) whose magnetization is per-
pendicular to the plane of incidence (direction of the v
axis). Some specific aspects of transverse MO
waveguides are discussed. For fast calculation and opti-
mization, the MO isolation effects can be obtained from
first-order perturbation theory as described in Subsection
3.B. The anisotropy that originates from MO effects is
then regarded as a perturbation of the guided modes of
the nonmagnetic waveguide. Advantages and disadvan-
tages of both approaches are diseussed in Subsection 3.0,

A. Rigorous Approach Based on Yeh's Matrix Algebra

Yeh’s matrix algebra®™*" represents a commonly used 4
# 4 matrix formalism for modeling of MO effects in
multilayer structures. The calculation can be separated
into three steps (see Fig. 3% (i) solving the wave equa-
tion in each anisotropic medium, thereby calculating the
proper mode propagation vectors and the proper mode po-
larizations in each medium, (ii} formulating the boundary
conditions in the form of a 4 % 4 matrix equation, result-
ing in a total multilayer stack transfer matrix M, and fi-
nally (iii) expressing the resonance condition for wave-
guide modes in terms of the total matrix elements M;;.

1. Propagation of Light in a General Anisotropic
Multilayer Structure

The field vectors can be assumed to have exp|jluwt
= k'"'r)] dependence (i.e., to be plane monochromatic
waves), where k'™ = [k, ™k, k,) = ko[N,"N,N,] is
the wave vector, &y = w/e = 27/A, and @ and A denote
the angular frequency and the wavelength, respectively.
According to the coordinate system chosen, N, = 0 and
N, represents the complex propagation constant often de-
noted n gin integrated optics. Because of Snell’s law, the

waveguide propagation 3 waveguide resonant
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Fig. 3. Schematic of the application of Yeh's matrix algebra to
pridluce the waveguide resonant condition and a solution of the
inverae problem,
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Fig. 4. Four eigenmodes propagating in an anisotropic layer,

tangential components of the wave vector, &, and %, (and
also of N, and N, = n.), are the same throughout the
layered medium. In terms of the complex material ten-
sors & and 4, Maxwell's equations for the nth me-

dium become
k" x Hy'™ = —weye™Ey™,
kY x Eﬂ[n? e “J.Floilr":'Hn[“]. (1)

where E; and H; denote the electric-field and the
magnetic-field vectors, respectively. According to Eqs.
(1), the wave equation can be obtained in the matrix
form*7

INIA] IR + EE) = o, @)
where matrix N is a vector product defined by
ki®! x Epi™ = koNWE,™

0 -N, N,
= ko| N 0 — N, Ry,
_Nr Nxm} 0

(3

where N, = 0 and N, = n g, corresponding to the coordi-
nate system chosen. In Cartesian coordinates, wave Eq.
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where A" denotes the |:nuu'ni::1||3;1car amplitude and ¢, is the
normalized eigenmode polarization. Similarly, by using
Eqs. (1), one can obtain eigenmode magnetic-field vectors
H{Ijl:n] and hj_{nill

The requirement for the continuity of the tangential
components of the total electrie field and the total mag-
netic field at the interfaces can be written in the form of
4 % 4 matrix equations.*>*** The field amplitudes at
the interfaces between the layered structure and the iso-
tropic half-spaces at x = x; and x = x,, are related by

ﬁ[ﬂi = [DJI}JJHIDI]:IP{I}{UIJ}"I L [D{M] 1D1N+1:IA|:M+”
= MAW*D, ®)

where A'™ is a four-component vector of the complex am-
plitudes A;'™ of the jth (j = 1,2,3,4) eigenmode in layer
n

Al[n’:
AW = j:L; . (M
A ‘{n}
D' iz the 4 ¥ 4 dynamic matrix:
elyiﬂ egy[ﬂ! eﬂy["} eﬁ[n]
Din = hls{n} hzz‘"] haz‘":' hs;[[:: ' (8)

Elz[n? Eﬂz{"' E:h{"] ey,
hly{ni h'—{rm hﬂym] l'l..b.“":'

and P'™ is the diagonal propagation matrix with diagonal
elements P,;'" = exp[—jkN, "t ], i=1,...4. The M
matrix defined by Eq. (6) describes the global reflection
and transmission properties of the layer structure, 252320
It is useful to define the characteristic matrix®"3!

(2) can be written in matrix form as §i7) = pirpEpial]-t (9)
fxxm:l - .F'Ie“z Ez;r[n] Ezz[“:' + "'r:d'lim""r::':“:I ED::';“]
€™ 6" = ng' — NS £y Eﬁ,:“; =0 (@
Ll
E”r_n] + anFNr.ti“] Ezy[n:l Ez.-‘"} = Nzlfnilﬂ E':'z

For nontrivial plane-wave solutions, the determinant of

the matrix in Eqs. (2) and (4) has to be zero™*%;.

det{N[ 4] 1N + g} = g, (5)

which results in a fourth-order equation in N,"*, which
yields four roots: N,J-r“’, Jj=1,2 3, 4. This solution
corresponds to four propagated waves called the eigen-
modes. The eigenmodes that correspond to N,m“'] are
chosen as forward propagaling waves; those that corre-
spond to N,.,", as backward propagating waves (see
Fig. 4). The terms “forward” and “backward” here are to
be interpreted with respect to the x axis and obviously do
not refer to the propagation direction of the sought wave-
guide eigenmodes. Solution of Eq. (4) gives for each
ngji“J the corresponding electric-field vector amplitude,
which can be written in the form Eg '™ = 4",

and express the M matrix of the structure as

N
Slfrl'l
11

The optical intensity (power per unit area) of the jth
plane-wave eigenmode in layer n is given by the ampli-
tude of the Poynting vector:

M= [D[UP]—I DEN+1'I_ (10}

1
5" = 5 REy™ x Ho/"*Jexp(2ky I[Nz} (A1)

The wave function of a guided mode must be a continu-
ous, single-valued, and finite solution throughout the en-
tire space. Consequently, only the amplitudes of the
maodes in the substrate and the superstrate for which the
field decays to zero at x = To do not vanish (Fig. 2). If,
for each layer, the eigenmodes are ordered in the follow-
Ing way:
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:I["'ﬁ'r.rl} = ﬂ] jLNIE:I = 0: j{NrﬂJ = ﬂ:

FN ) =0, (12)

complex amplitudes Alfﬂ] A 4‘,"ﬂv[ill] = Agr.ﬁfﬂ} = Ad[""-ﬂ}
= 0 will vanish according to Eq. (11) and Eq. (6} will be-
come

i My My Mg Mu[ 4,000
Ay Mgy Mg My My 0

':'m] T | My Mg My My, 331;0'” ]
s My My My My

(13)
which finally results in the guided mode condition
MIIMH_ M]_:;J‘Pf:u = 0. {14)

Waveguide-mode condition (14) corresponds to the poles
of reflectance amplitudes as originally derived by Yeh %
Note that the condition of the guided modes can be ex-
pressed in the form of Eq. (14) only if conditions (12) are
satisfied.

2. Magneto-Optical Transverse Geomelry

The caleulation simplifies in the case of transverse MO
geometry (magnetization vector parallel to the x axis).
The relative permittivity tensor then has the following
form™?:

gl 0 . jQ[n‘JE[n]
el = 0 & 0 § (15)
jQin} gt 0 gnk

where @' denotes the Voigt MO parameter,
= n'®? and n'™ is the refractive index. The symmetry
properties of tensor (15) are related to Omnsager’s prin-
ciple, &;,{M) = ¢;,( ~M), corresponding to the unique non-
reciprocity of MO effects and resulting in device isolation.
The off-diagonal components and MO parameter @'*' are
proportional to the transverse magnetization. Eigen-
value Eq. (5) simplifies to

[é™ — ng® — N,12™2)
X [eln) — @M — g 2 N ™2 =0. (18)

There are four propagating eigenmodes in a transverse
MO medium:

0
N, ™ = —[e — pg#]1%, e, ™ =11, (17
i}
0
N,,i® = —N,, ), el =|1], (18)
0
qu”” = _[E!;n} i ”-r.-ﬁ‘z _ Q[nnzsru:]lm,
_ JRUM M — n G N 4t
e, = gt 0 : (19)

2
e — LU
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N, = _Nﬂin], ‘?:m] =,
JQWE™ + g gl
® 0 X (200
€™ — p g
where Cy," are the normalization coefficients that cor-
respond to the normalization condition. The dynamic
matrix is in the block-diagonal form
D™ Dy 0 0
D™ — D, 0
T 2 e anlenl )
0 0 Dq-_q D33
0 0 D™ Du™
where
D 11':":I =1,
Dzlm = N:i["jr

D“{n} = gnd _ nmi,
Dda‘"] = J'-Q[n]fm}"crr o mexﬂ["]s
D“['ﬁl =J'Q[rrilfllrl]ncﬁ+ E[“]Nﬂ[“:'.

The dynamic matrix for a nonmagnetic izotropic me-
dium can be obtained from Eq. (21) by the substitution
@ = 0. The two separate blocks in dynamic matrix (21)
correspond to s polarization (TE) and p polarization (TM).
TE and TM modes propagate independently, and no mode
conversion occurs in the transverse MO geometry ™
Consequently, total matrix M also becomes a block diago-
nal, and M3 = M4 = 0. In the linear approximation of
the permittivity tensor, only p-polarized waves are sensi-
tive to the transverse magnetization, and waveguide con-
dition (14} for these modes takes the simple form M.,
= 0.

3. Numerical Implementation of Yeh's Algebra for a
Waveguide Isolator

Figure 4 shows schematically how waveguide condition
term M M4y — M 3M 5, is obtained from a known com-
plex propagation constant n .y = k. /k;. However, model-
ing of the practical MO waveguide isolator requires caleu-
lation of the real and the imaginary parts of n g from a
known waveguide geometry, which represents a numeri-
eal solution of the inverse problem. The waveguide reso-
nant equation is solved by two-dimensional zero search-
ing in the complex plane [MR(n g}, Jng]. The problem is
solved numerically as a two-dimensional minimization of
the waveguide term amplitude by use of a Levenberg—
Marquardt algorithm® with Hin ) and Jin g as two fit-
ting parameters. Ming is the propagation constant of
the waveguide mode. According to the sign eonvention
used, positive and negative J(n ) indicate an amplifying
and a decaying waveguide mode, respectively.

The modal gain and the modal loss of the waveguide
isolator are usually expressed in units of L'em or in deci-
bels per centimeter. The gain in units of l/em can be ob-
tained from the relation
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2n Jin.) J(n )
—— = (.12566
A [m] 100

gain [lfem] = 2
(22)
The factor 2 in Eq. (22} originates from power gain.

Similarly, the gain in decibels per centimeter can be ob-
tained from the relation

. LI A Jin gy}
gain [dB/em] = E-ﬁgam [Vem] = 0.545-8-1 [ml’
(23)

B. First-Order Perturbation Theory

If it is assumed that the off-diagonal elements in relative
permittivity tensor € of the MO ferromagnetic metal layer
are small compared with the diagonal relative permittivi-
ties, then the TM eigenspectrum, ie., eigenvalues and
eigenfunctions (modal profiles), of the transversely mag-
netized MO waveguide can be dedueced from the
eigenspectrum of the isotropic waveguide by means of
perturbation techniques. In this subsection we derive
the perturbation formulas for this purpose. It must be
noted that derivation of these formulas must be done with
great care, as the unperturbed eigenspectrum is not
power orthogonal, because of the metal losses that are al-
ready present in the unperturbed waveguide. As a result
the perturbation formulas do not bear any resemblance to
those traditionally encountered when one is caleulating,
for instance, modal gain in laser structures® or nonrecip-
rocal TM phase shifts in yttrium iron garnet-based MO
waveguides.® In those cases the original modal spec-
trum can be orthogonalized by use of the power integral of
the modes, as the unperturbed waveguide is lossless.
The derivation given here is more general and is correct
for both lossy and lossless unperturbed waveguides, as it
makes use of the fundamental Lorentz reciprocity theo-
rem for the orthogonalization of the original modal spec-
trum.

1. Modal Expansion for the Perturbed Fields

The derivation of the perturbation formulas is based on
the so-called modal expansion method.® The basic idea
behind this approach is the completeness of the
eigenspectrum of any isotropic waveguide.”™ As a result,
the unknown eigenmode {E(r}), Hir)} of the actual MO
waveguide can be expanded in the complete set
{Ei(r), H;(r)} formed by the eigenmodes of the unper-
turbed, isotropic waveguide. Throughout this section,
capital letters are used to represent the modal fields in-
cluding their z-dependent propagation factors exp{—jSz=),
whereas lowercase letters are used to describe the field
profiles (and thus depend only on transversal coordinates
P
The Maxwell equations in the perturbed waveguide can
be put in the form

V % E(r) = —jwuH(r),

V X Hir) = joge(p)E(r) + J(r),
(24)

where

Jir) = jweAe(p) - E(r), (25)
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0 "0 -jeQ
Adpy=| 0 "0 0 | (26)
+je,@ 0 0

In other words, the perturbation can be written as a cur-
rent source term for the unperturbed waveguide. Using
the completeness theorem, we can expand the transversal
components of the unknown fields as (where M is the full

eigenmode set of the unperturbed waveguide, including
both forward and backward propagating modes):

Eir)| E, (r)
h{m -EA r::-qu[H“{ﬂ], (27)

where a z dependence of the C expansion coefficients is al-
lowed.

A similar expansion equation can now be derived for
the longitudinal components of the unknown fields by use
of the z components of the Maxwell curl equations:

w, - [V, X E(r)] = =V, - [u, X E(r)]
= —juwupH,(r),
=V - [u; X Hyr)]

u, - [V, x Hyr)]

= jwegu, - [e(pd + A#(p)]
- E(r), (28)

where I is the 3 % 3 unity tensor.
The same equations but without the perturbation are
satisfied by the modal fields of the isotropic waveguide:
_?: : [u¢ x E.l:.i{r” . —jWﬁuHh*{l‘},
-V, - [u, X H,(r)] = jwege.(p)E, i(r). (29)
If the transversal expansions of Eq. (27) are substituted
into Eqs. (28), making use of Eqs. (29) and expanding the
right-hand part of the second of Eqgs. (28) in its longitudi-
nal and transversal contributions yield the following ex-

pansion formulas for the longitudinal parts of the un-
known fields:

H.(r) = 2, Ci(z)H, (r),

e
E(r) = ———{ -3 Ci2)V, - [u, X H,(r)]
Juwege{p) | fom

- jwep 2, Cil2)A&,(p) - By (r)

ig A

ia M ieM 'E.r{ Pl]
(30)

Here it is assumed that summation and differentiation
can be interchanged. Now the problem is reduced to
finding a set of scalar expansion coefficients C;(z) instead
of three-dimensional unknown fields {E(r), Hir)}.

The next step in the derivation of the perturbation for-
mulas consists of building a set of coupled first-order dif-
ferential equations for C;(z). For this purpose we first
need to take a small sidestep and recall the orthogonality
relationships that are satisfied by the modes of the lossy
unperturbed waveguide. Tt is known that for a lossy iso-
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tropic waveguide the orthogonality between the eigen-
modes is expressed through the field integral

1
EJ‘J‘ [e'a{p} x h_.ll::p.]] : uzdS T 'EIE‘IW {31}

or, by use of the mirroring properties {e,; = e, _; and
h,; = —h, ;) of isotropic waveguides and noting that
only transversal field components contribute to the inte-
gral in Eg, (31),

1
7 IJ. [e_(p) % hiip) — eip) x h_i(p)] - wdS = 5;.
(32)

Note that, in this version, the z-independent moedal field
profiles {ejp), hy(p)} can be replaced by their
z-dependent counterparts {E;(r), H;(r)}, because each
term represents a multiplication of a forward- and
backward-traveling mode, so the exponential propagator
factors will cancel.  One can determine the expansion co-
efficients ;(z) by projecting {E(r), H{r)} onto the eigen-
modes of the unperturbed waveguide {Ejr), Hi(r)} and
using Eq. (32):

1
Cilz) = ZIJ [E_;(r) ¥ H(r) — E(r) x H_;(r]]

- wdS. (33

MNow we are close to the announced set of coupled dif-
ferential equations for C;(z). The last step consists of
deriving the connection between perturbation current
source oJ of Fq. (25) and the expansion coefficients Ci(z).
Such a relationship will express the way in which the per-
turbation current source excites the different unper-

turbed modes.

This connection can be found by use of the fundamental
Lorentz reciprocity theorem.*® The normal eigenmode
{E;(r), Hj(r)} is sustained in the unperturbed waveguide
without any sources, whereas the unknown fields
[E(r), Hir)} are, according to Eqs. (24), sustained in the
unperturbed waveguide by the current source J{r) of Eq.
{25). Applying the Lorentz reciprocity theorem to these
two sets of fields yields

V . [E_i(r) x H(r) — E(r) x H i(r)]
= ~E_,(r) - J(r). (34

Integrating Eq. (34) over an arhitrary cross section of the
waveguide gives

[J [v, - [E_i(r) x H(r) - E(r) X H_{(r}]

dsS

d
+ E[E..,{r}l * Hir) — E(r) x Hyir)] - u;
i

= II E_ir) - J{rids. (35

The first term on the left-hand side of Eq. (35) reduces
to a contour integral at infinity by means of a Green inte-
gral theorem, which will, owing to the radiation boundary
condition, be zero, whereas the second term is (if integra-
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tion and differentiation are in‘i.eru:hangeable}l in view of
Eq. (33) nothing else but four times the z derivative of the
(2] coefficient. Expanding perturbation current source
J by use of Eqs. {27) and (30) and taking the form of the
permittivity perturbation [Eq. (26)] into account yield

J = fweufr{pJQ{p}&E Cul2)JE 4(¥)u, — jE, 4(r)u,
& A

= QplE, piriu]. (36)

This equation yields the announced set of coupled first-
order differential equations:

dCiz) ;
e —j 2 AuCrlz)expl—i(Be — B)z], (3T)
ke
with (e,; = e, _; ande.; = —e, ;)

i E
Aik = _jT“fJ {E.—{P}Q{P}[ESI.{PJI?L#(P}

+ e, i(pe. p(p) — JQ(ple, i ple, 4(p)]}dS.
{38)

Incorporating the propagator factor in the z-dependent
expansion coefficients, X,;(2) = C;(z)exp(—j&;z), results in
the following compact version of the evolution equations:

dX;iz)

—— = —jBXi2) ~j 2, AuXalz).  (39)
de Fei

It is important to note that, until now, no approximations

have been made. The set of evolution equations above is

a rigorously equivalent formulation of the Maxwell equa-

tions for the unknown electromagnetic fields.

2. First-Order Perturbation Formulas

The set of evolution equations described by Eq. (39) rep-
resents nothing else but the eigensystem for the modes of
the MO waveguide. Indeed, Eq. (39) can, in matrix nota-
tion, be written as

sadln A - X 40
— = 4 - X(z), (40)

with
Ay = gl + Ay, (41)

Solving for the eigenmodes of the MO waveguide thus
gets down to caleulating the eigenvalues I' and the eigen-
vectors 4. The practical problem generally consists of
evaluating the modification of the eigenvalue and the
eigenfunction (modal profile} of an unperturbed guided
mode m caused by the perturbation.  Within the assump-
tion of weak perturbation, this problem can be formally
solved by means of an iteration procedure. In the limit of
a vanishing perturbation, we must recover mode m, i.e.,
I'=g..X, = 1 [the exp( —jT'z) dependence is henceforth
understood], and X; = 0 for { # m. For a nonzero per-
turbation we keep X, = 1 and assume that T' — 8 and
that the other X; are of order &{1). Up to first order in
the perturbation, Eq. (39) then reads as

i IB-'I‘E = A-mm + @{2]‘: {42a)
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(I' = B)%; = Ay + N 2), L #Fm,
{(42h}
or, up to first order,
Aim
Xj=—or, i+ m. (42¢)
.Hm h rBJ

For the particular MO waveguide under study here, the
first-order perturbation shift of the propagation constant
of guided mode m thus becomes

(g

ﬁ_ﬁm = 'J"z_ II E_r{P]Q{P}ex.m{p}gz.mfp}dg

e 3
= _E-JJ ﬂ'f:zlipje#.mip}ez.m{p}ds' (43)

Note that the last term in the integrand of Eq. (38) has
been neglected for the caleulation of A, , as it iz of zec-
ond order in @. Here it is tacitly assumed that the un-
perturbed guided mode is normalized according to Eq.
{(31). Remarking that e, ., = —e,, and e, , = e,
proves that this shift Ag is indeed nonreciprocal. Fur-
thermore, using the second form of Eq. (43) easily shows
that in the case of a lossless waveguide the nonreciprocal
phase shift is purely real. Indeed, for a lossless wave-
guide, A, is purely imaginary (because of the needed
hermiticity of the permittivity tensor) and, as is known
from optical waveguide theory, e, and e, are exactly =2
out of phase. The integrand in the second form of Eq.
(43} is thus purely real, because, except for a trivial nor-
malization constant, e, can be chosen to be purely real.
When the waveguide becomes lossy, A acquires an im-
portant imaginary part, owing both to a small change in
the w2 phage difference between e, and e, and, more im-
portantly, to the occurrence of a nonzero real part for Ae,,
{breaking the hermiticity of the permittivity tensor of the
MO layer).

The first-order correction to the modal profile of the
guided modes can be only approximatively calculated
with Eq. (42e), as it requires not only a diseretization of
the continuum of radiation modes but also a truncation of
that discretized part of the spectrum. In that way the
practical value of Eq. (42c) is quite limited. The main
feature of perturbation theory modeling of this device lies
in its straightforward calculation of the shift of the propa-
gation constant. Finally, it has to be remarked that TE
modes in this configuration can also experience a nonre-
ciprocal phase shift. Indeed, a TE mode in an actual two-
dimensional waveguide cross section does not have van-
ishing x and z components, and Eq. (43) will therefore not
be strictly zero for TE modes (as it would for a slab wave-
guide). This phenomenon is, however, several orders of
magnitude smaller than the standard TM nonreciprocal
rhase shift.

Using Egs, (43) and (23], we can caleulate the isolation
ratio of the deviee, defined as the ratio of the extinction of
forward optical power to backward optical power and ex-
pressed in decibels per centimeter as 15 [dBfem]
= 17.37 x HAS[Lem]). The integral in Eq. {43) can
easily be numerically evaluated by use of an extended
Simpson quadrature formula, as for most practical situa-
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tions the MO metal can be apptoximated by a rectangular
region. For the caleulation of the unperturbed field pro-
files there exists a variety of mode solvers that are ca-
pable of solving for fully vectorial field profiles of
wavepuides with one- or two-dimensional cross sections,

C. Advantages and Disadvantages of the Two Methods
The two theoretical models outlined above have funda-
mentally different approaches to the modeling of the de-
vice under study, which naturally implies that each has
both advantages and disadvantages,

The method based on Yeh's matrix formalism is rigor-
ous without approximations. For a transversal MO
structure, the algebra becomes simple and the modeling
difficulty is comparable with that of nonmagnetic struc-
tures. Other advantages of the Yeh formalism are (i) its
easy generalization to MO waveguides with a general
magnetization direction in specific polarization conver-
sion waveguides, (ii) the possibility that it can include
nonlinear terms that originate from higher-order MO ten-
zors, (1i1) the fact that a matrix-based method facilitates
fast treatment of a periodic system, and (iv) its ability to
he generalized to more-complex structures including opti-
cal anisotropy.

The main advantage of the perturbation method lies in
the numerical effort required. The model requires a full
vectorial TM modal solution of a one-dimensional isotro-
pic waveguide {which is, with modern-day waveguide-
solving tools, a straightforward task) combined with the
numerical integration of a one-dimensional overlap inte-
gral. Unlike the perturbation method, the rigorous ma-
trix formalism has to be exercised twice, once for the for-
ward and once for the backward propagation direction.
The main advantage of the perturbation model therefore
is its modeling speed, interesting for a fast optimization of
the device. However, caleulation of the precise modal
profiles of the MO waveguide is nearly impossible with
the perturbation method, because of the infinite summa-
tion in Eq. (42¢). Finally, an important advantage of the
perturbation approach is that it is not restricted by the di-
mensionality or the shape of the perturbation region. As
soon as the unperturbed nonmagnetic waveguide can be
solved, the nonreciprocal phase shift can be caleulated by
evaluation of the overlap integral [Eq. (43)].

4, NUMERICAL MODELING

The two modeling approaches are numerically compared
in a hypothetical benchmark example with a simplified
layer structure. Even though the numerical results ob-
tained for the internal gain levels needed in this structure
are gquantitatively close to or above the limit of what is
possible, this example provides a qualitative insight into
the behavior of the device, Furthermore, it allows us to
draw important conclusions concerning the modeling ap-
proaches of this type of device. In Subsection 4.B the rig-
orous Yeh method is applied to a realistic MQW SOA layer
structure fo indicate the numerical feasibility of the con-
cept and give some idea of the optimization routines used
in the design of this tvpe of nonreciprocal waveguide,
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For all simulations the telecom wavelength of 1.3 pm
was used, and an InP-based material system was chosen
for the S0A layer structure. The isolator structure con-
sists of a CoggFeq MO film with in-plane magnetic anisot-
ropy at transversal geometry. We pragmatically intro-
duece optical gain in the InGaAsP active layer(s) into the
numerical model as a positive imaginary part for the me-
dium’s refractive index without modeling the relationship
between carrier concentration and optical gain.

A. Simplified Isolator Structure

Figure 5 shows the simplified strueture of the isolator
consisting of a CogyFe;q MO film, an InP spacer layer, and
an InGaAsP layer that comprises an effective active me-
dium upon an InP substrate. Optical constants of the
materials and thicknesses are shown.? %2

Guided TM modes correspond to the zero points of the
waveguide term [Eq. (14)], which for the transversal MO
configuration reduces to M3 = 0. Figure 6 shows the de-
pendence of waveguide term |M4; on the real and the
imaginary parts of the effective index of refraction, i .4
and Jn.g. Asharp minimum (zero point) corresponds to
zero-order puided mode TM;. Searching for a minimum
in the complex plane [Rin ), Jin 4] gives the solution of
the waveguide resonant condition. Note that the wave-
guide term falls to zero also for n.gy equal to the sub-
strate’s refractive index. Consequently, minimum
searching close to the cutoff condition (n .y close to the
substrate’s refractive index) requires taking care of the
numerical stability of the solution and a proper choice of
the initial guess used in the minimization,

Figure 7 shows the modal gain [=J(ng)] of the zero-
order TM mode as a function of the internal gain of the
active layer. The difference between forward and back-
ward regimes represents the nonreciprocal gain property
of the transversal MO isolator. The gain and losses of
the waveguide can be controlled by the internal gain of
the active layer. If the waveguide gain is adjusted to zero
for the forward direction, the loss in the backward direc-
tion will represent the desired device isolation. An al-
most linear dependence of the waveguide gain-losses in
both directions enables a fast calculation to be made of
the device’s isolation and the necessary internal gain of
the active layer.

Figures § and 9 show the dependence of the waveguide
isolation and the necessary internal gain of the active
layer on the thickness of the active layer. Isolation in-
creases for decreasing active-layer thickness and reaches
a maximum just above cutoff thickness, The steep de-
crease of isolation when the cutoff core thickness is ap-
proached is a result of a strong increase of the modal tail

air nll =1

nlll = 4,35 — j4.75 i
CoggFeyp MO layer Q = 0.0214 + j0.0442 44 = 100 nm
InP spacer layer n'® = 3.2019 t2 = 250 nm
InGaAsP active layer (¥ = 33071 + jk #4 = 200 nm

InP substrate nt) = 3.2019
Fig. 5. Multilayer structure of the waveguide isolator and the
coordinate system chosen,  Optical and MO constantz for the
wavelength of 1300 nm were obtained from Refs. 39-42.
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—_ Im(ng)=0
Im(ng) =—0.002]
) = ~0.004{
Im{n@g} = —{),006 i
Tm(ng) = ~0.008{"

i i
32 3.22 324 3.26 3.28 33

Propagation constant = R.c{nq?-j

Fig. 6. Waveguide term [M ;| as a function of Rin g and Jn 0
for the structure shown in Fig, 5. A thickness of the InP spacer
layer of ¢'* = 500 nm and zero gain of the active layer & = 0
were used in the model. The sharp minimum corresponds to the
guided mode that satisfies waveguide resonant condition Mgy
= 0. Searching the minimum of |M | by use of the optimiza-
tion algorithm gives the value n e = 3.23195 — j0.00416.

Gain of waveguide (1/cm)

0 S00 1000 1500 2000
Internal gain of active layer (1/cm)

Fig. 7. Gain of the waveguide as a function of the internal gain
of the active layer. The difference between forward and back-
ward regimes represents nonreciprocal properties of the trans-
versal MO isolator. The structure of the waveguide is the same
as that shown in Fig. 5. Whereas the gain of the active layer
was adjusted to 1139 cm ™" (& = 0.01178), the waveguide gain for
the forward direction was equal to zero. Then the isolation of
the device defined as backward losses was 24.4 cm ™! [correspond-
ing to J(n g4 = 0.000252],

into the substrate when the mode approaches cutoff. As
a consequence, the relative amount of guided TM light
near the MO metal drops steeply. The increase in neces-
gary internal gain of the active layer with decreasing
active-layer thicknesses does not show this maximum.
This is so because decreasing the active layer’s thickness
will only result in a smaller overlap with the gain region
and hence will always lead to an increasing necessary in-
ternal gain. The dependencies for different thicknesses
of the InP spacer layer show that both the isolation and
the necessary internal gain of the active layer increase for
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decreasing InP spacer thickness, This is not a surprising
result, as energy easily penetrates the thinner InP spacer
into the absorbing MO layer. Consequently, if the maxi-
mum achievable internal gain for a fixed active layer
thickness is known, one can optimize the isolation ratio of
the device by optimizing the spacer layer's thickness
within the limits of the available gain.

Figure 10 shows the effect of the MO layer’s thickness.
Both the isolation and the necessary gain of the active
layer increase with increasing CogyFe, thickness. For
large thicknesses the effect is saturated, indieating that
the upper interface of the MO metal has become irrel-
evant. The existence of a maximum and the behavior for
thin MO films originate from the effects of phase changes
of reflected waves at the interfaces and interference phe-
nomenda.

All the simulations described above were performed
with both Yeh's formalism and the perturbation theory
model. The two approaches gave nearly identical out-
puts, indicating that the assumptions of perturbation
theory are valid and the induced MO anisotropy can in-

100

g

2

2

Isolation {1/cm)

i 100 200 300 400 500 600
Thickness of core active layer (nm)

Fig. 8. Device isolation as a function of active-layer thickness

shown for the waveguide structure from Fig. 5. The three

curves correspond to InP spacer layer thicknesses of 250, 500,

and 760 nm.

t, p=250 nm

lw ......... »,
J ; e p=-—==
0 100 200 300 400 00 &0

Thickness of core active layer (nm)

Fig. 9. WNecessary internal gains of the active layer for compen-
zation of waveguide absorption lozses in the forward direction
are shown for the same conditions as in Fig. 5.
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Fig. 10. Waveguide isolation and the necessary internal gains of
the active layer as functions of MO layer thickness. The struc-
ture of the waveguide is the same as shown in Fig. 5.

nll:

deed be considered a weak perturbation. Another confir-
mation of this conclusion is given by Fig. 11. Here, wave-
guide isolation is plotted as a funetion of the strength of
the Voigt MO parameter for various thicknesses of InP
spacer layers. Very good agreement between models is
obtained for the measured,* practical value of the param-
eter (factor f = 1). The small differences for a stronger
MO parameter, i.e, higher off-diagonal elements of the
permitiivity tensor, originate from neglecting the nonlin-
ear terms in @ in the perturbation-theory approach. The
nonlinearity of the dependencies shown that were ob-
tained with Yeh's formalism correspond to higher-order
MO effects originating from linear MO tensor.*® These
small and negligible differences between the numerical
results of the two models prove that for this device the
perturbation-theory approach is suitable for fast optimi-
zation,

The values for the necessary internal gain, obtained for
this simplified izolator layer structure, are for some cases
greater than what is theoretically achievable in bulk ac-
tive layers. Therefore, the main goal of this example was
to illustrate qualitatively the influence of the different
structural parameters on the behavior of the device and
to compare the two different modeling approaches. In
Subsection 4.B it will be numerically shown that this de-
vice is indeed feasible if a tensile strained MQW layer
structure iz used.

B. Multiple-Quantum-Well-Based Isolator

The simplified MO waveguide of Subsection 4 A is gener-
alized here to a more realistic MQW structure. [ts de-
tails are summarized in Table 1, with the optical and MO
parameters indicated. The active layer consists of a
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multilayer of six tensile strained @Ws separated by
strain-compensating compressive strained barrier layers.
The upper and lower separate confinement heterostruc-
ture (SCH) layers have been included to permit optimiza-
tion of the TM confinement in the active region. The con-
ducting semiconductor contact layers on top are needed to
facilitate the formation of a good ohmic eontact for the
current injection.

Structure and layer thicknesses have to be optimized to
maximize desired waveguide isolation for minimal, or at
least achievable, internal gain of the @Ws. Optimization
of the structure can be obtained by nonlinear least-
sguares fitting of the thickness parameters. We propose
the following merit function, which has to be minimized:

300

‘ | ! 3

Factor of Voigt MO parameter
Fig. 11. Comparison of the perturbation theory and the rigorous
approach based on Yeh's formalism. Waveguide izolation is
shown as a function of the factor of Veigt MO parameter @
= f@eep.. The MO waveguide of a real CogFeyy film corre-
sponds to f = 1. Good agreeinent between the two approaches
can be observed.

Vol. 22, No, 1/January 2005/0. Opt, Scc. Am. B 271

;
Internal gain
Merit function =’ ———— (44}
Izolation™

where m is a constant that characterizes how much the
influence of the gain in thiz merit function is limited.

Figure 12 shows the thicknesses optimization of the
isolator structure shown in Table 1. First, the SCH lay-
ers were optimized by use of the merit function from Eq.
(44) for the InP spacer thickness as a constant parameter.
The factor m = 1 was chosen. In the second step we
could choose the thickness of the InP spacer laver to use
optimally the available gain of active layer. Tt can be
seen how for increasing thickness of the InP spacer layer,
or in other words for a layer structure converging toward
a nonmagnetic waveguide, both SCH layers converge as
expected toward the same value, resulting in a symmetri-
cal guiding layer. For extremely thin InP spacer layers
the role of the lower SCH layer becomes inereasingly ir-
relevant. Figures 12(a) and 12(b) show that, for normal
internal gain levels in the QWs, isolation ratios up to 30
em ™! are achievable by this device. This means that, for
instance, 25 dB of net isolation requires a device length of
only 1.9 mm.

These preliminary practical deviee simulations prove
the feasibility of the novel isolator concept. A more-
detailed deviee optimization requires a thorough study of
several other effects, such as the gain-current behavior of
the active layer, the optimization of the number of wells
with the distribution of the electrical carriers over the
GWs taken into account, and optimization of the two-
dimensional layout of the waveguide cross section with
lateral current spreading taken into account. However,
even though all these effects would permit a better opti-
mization of the practical device layout, they will not
change the order of magnitude of the isolation values pre-
dicted here or of the needed QW internal gain levels.

Table 1. Structure of the Modeled Isolator Based on Tensile Strained MQW Structure®

Layer Composition (Dopant, Strain €) Refractive Index (Bandgap A,) Thickness
MO layer Cogpl'eq n =435~ j4.76 100 nm
(@ = 0.0214 + jO.0442)
Absorbing contaet layer Ing 5y Gay ghs n=36-j0.2 15 nm
(Be: 3 » 10%em™) {162 um)
Transparent contact layer Iy g1 Gag 19480 4 Fo s n = 3.37 100 nm
{Be: 1 10%em™) (1.17 pem)
Spacer layer InP n = 3,203 140420 nm
(0.9 wm)
Upper SCH Ing gGay \Asp 0y Poga n =328 Crptimize
(1,03 pm})
Barrier (%7} Ing agGag ordisn oo o ve 1= 3.29 22 nm
{e = +0.2%) (106 pm)
QW (=6} Iny 5Gay gatvsy 7aPh 20 n=334+jk 11 nm
e = —1.1%) (1.3 pem)
Lower SCH Ing oGay 1Asp 2 Pga n =328 Optimize
(1.03 pom)
Substrate InF n = 3.203
(0.9 )

* Rafractive indices are taken from Refe. 38-432,
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Optimization of MQW isclator
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Fig. 12. Optimization of the MWQ-based isolator described in
Table 1. The lower and upper SCH layers are optimized by uze
of the merit function from Eq. (44) with m = 1 for the InP spacer
thickness as a constant parameter. For a given available inter-
nal gain of the QW structure (b), the optimal thicknesses of InP
and SCH layers (c) can be obtained. (a), The corresponding izo-
lation.

=
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5. CONCLUSIONS

Application of the 4 » 4 Yeh matrix formalism to model
the isolation properties of a novel magneto-optical inte-
grated optical isolator has heen demonstrated. The rig-
orous approach has been compared with the fast
perturbation-theory method. Good agreement between
the two approaches was obtained, proving the usefulness
of approximate perturbation methods for these MO de-
vices. Rigorous simulations and preliminary optimiza-
tion of the one-dimensional layer struecture of a practical
tensile strained MW CoFe-clad SOA prove the theoreti-
cal feasibility of this novel isolator concept.
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