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Abstract—In this paper, we analyze the scattering at discontinu-
ities in cylindrical waveguides, starting from a vectorial eigenmode
expansion and by introducing perfectly matched layer (PML)
boundary conditions. The structure under study is enclosed in a
metal cylinder to discretize the radiative mode spectrum, while
the coating of this cylinder with PML vastly reduces the influence
of parasitic reflections at the metal. This allows for a model that is
both faster and more accurate than previous models.

Index Terms—Absorbing boundary conditions, mode matching,
perfectly matched layers, scattering.

I. INTRODUCTION

T HE analysis of discontinuities in cylindrical waveguides
is of great practical importance, not only to investigate the

reflections at the end facets of optical fibers, but also as a sub-
problem in the study of vertical-cavity surface-emitting lasers
(VCSELs). These cylindrical resonators consist of a stack of
epitaxially grown dielectric layers, forming a top and bottom
distributed reflector around a light-emitting active layer (Fig. 1).
The laser light exits the resonator perpendicular to the direction
of the layers. These cavities can be considered as a sequence of
cylindrical waveguides, each having a different thickness and
cross section [1], [2].

The advantage of an eigenmode expansion [3], as compared
to other methods based on spatial discretization [4]–[6], is that
the field is represented by a sum of a relatively small number of
eigenmodes, as compared to being specified at a large number
of grid points on a discrete mesh. The eigenmode formula-
tion, therefore, introduces a significantly smaller number of
unknowns, leading to a greatly reduced computational effort.

In order to accurately model diffraction effects, it is necessary
to include both guided and radiation modes in the eigenmode ex-
pansion. In open structures, however, the radiation modes form a
continuum that is hard to model. Therefore, the structures under
study are typically placed inside a metal volume that discretizes
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Fig. 1. Typical VCSEL structure, enclosed in a metal discretization cylinder.

the mode spectrum. However, this has the disadvantage of intro-
ducing parasitic reflections at the metal walls. Placing the metal
walls sufficiently far from the structure of interest can minimize
the effect of these reflections, but this, in turn, requires a larger
number of modes for convergence.

Recently [7], [8], it was shown that coating the metal walls
with a perfectly matched layer (PML) greatly reduces the influ-
ence of parasitic reflections in the case of planar slab waveg-
uides. In this paper, this approach is extended to cylindrical ge-
ometries. It is shown that the use of a PML-coated discretiza-
tion volume is able to accurately model open space, while at the
same time requiring only a discrete set of modes.

This paper is organized as follows. Section II investigates
the nature of the modes of an optical fiber-like structure en-
closed in a metal cylinder coated with a PML. Section III com-
putes the scattering at an interface between two different waveg-
uides based on the well-known mode-matching technique. It is
demonstrated that the use of a PML can greatly improve the ac-
curacy and computation speed of the method. Section IV deals
with the efficient localization of the propagation constants in the
complex plane. Finally, in Section V, the tradeoffs are discussed
in the choice of PML parameters. In the following, a time
dependence is assumed.

II. EIGENMODES OF APML-COATED WAVEGUIDE

We use the complex coordinate stretching formulation
of PMLs [9], which states that an analytic continuation of
Maxwell’s equations onto complex coordinates provides for
reflectionless absorption of incident waves, regardless of
wavelength, incidence angle, or polarization. More specifically,
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Fig. 2. Oxide aperture waveguide, enclosed in a metal cylinder (top) and a
metal cylinder coated with a PML (bottom).

we introduce the following change of variables for the radial
coordinate in cylindrical coordinate systems:

(1)

with

for
for

(2)

Here, is the real radius of the metal cylinder andis the
real thickness of the PML. This change of variables recasts
Maxwell’s equation into ordinary-looking Maxwell’s equa-
tions, but in a complex coordinate system. With the inclusion
of the proper scaling factors for the fields inside the PML, this
formulation is equivalent with the use of an active anisotropic
medium as a perfectly absorbing boundary condition [10].

The advantage of the complex coordinate stretching is that
existing closed-form solutions of Maxwell’s equations can be
easily transformed to include a PML, simply by allowing co-
ordinates to assume complex values. For example, in the dis-
persion relation for a cylindrical waveguide enclosed in a metal
cylinder, we simply have to add an imaginary part to the cylinder
radius in order to include the presence of a PML that is coating
this cylinder.

The dispersion relation for the waveguide in Fig. 2 (see, e.g.,
[11]) can be written as follows:

(3)

with

(4)

and

(5)

Here, is the propagation constant of the eigenmode in the-di-
rection and is the free-space wavenumber. The subscripts 1
and 2 refer, respectively, to the inner and outer regions,is
the radial part of wavevector in medium, and and
are the relative permittivity and permeability in medium. A
prime denotes derivation with respect to the argument, are
Hankel functions of the first kind, and refers to the order of
the Bessel functions. The real radius of the inner waveguide is,
and is the complex radius of the metal cylinder.
Note that the thickness of the PML and the imaginary part
of the scaling factor do not enter into the equations separately,
but only combined through .

Fig. 3 shows the distribution of the propagation constants of
the waveguide shown at the bottom of Fig. 2, both in the com-
plex -plane and in the complex -plane.
The parameters are chosen to correspond to the technologically
important case of an aluminum–oxide (AlOx) aperture, where
an isolating low-index AlOx ring inside a VCSEL resonator
both acts as a focusing element and as a current confining struc-
ture [1]. The core has a radius m and consists of
AlAs with refractive index . The cladding is AlOx

and the metal cylinder has a radius
m. The wavelength is 1m, and the modes shown have Bessel

order .
It can be seen from Fig. 3 that the influence of a PML on the

guided modes is negligible in this case. They are still located
on their original place on the imaginary -axis. The radiation
modes, on the other hand, are no longer distributed along the real

-axis, but are located on four branches in the complex plane.
In analogy with the open case [12], we define the polarization
according to the sign of the real part ofgiven by

(6)

We designate modes with a positive real part ofEH, and
modes with a negative real part of HE. For high enough radial
mode numbers (i.e., far away from ), the branch closest
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(a)

(b)

Fig. 3. (a) Distribution of propagation constants in then -plane (circles
denote EH modes, crosses HE modes). (b) Distribution of radial propagation
constants in thek -plane (circles denote EH modes, crosses HE modes).

to the real -axis represents EH modes, while the other three
branches consist of HE modes.

Fig. 4 shows the total electric field of the modes marked
and on Fig. 3. The thickness of the PML is chosen to be
0.25 m, still with m. Note that the field is
significantly damped inside the PML. Therefore, by the time it
reaches the metal wall, its amplitude has considerably decreased
so that reflections will be much less pronounced. Also note that
modes on the HE branches behave like surface waves, whose
electric field is concentrated at the interface between the oxide
and the PML.

For other Bessel ordersthe propagation factors still approx-
imately lie along the same four branches: a single EH branch
and three HE branches representing the PML surface modes.
For , the modes are, of course, no longer EH and HE

(a)

(b)

Fig. 4. (a) Total electric field of EH modeA (n = 0:1208� 4:9517j). (b)
Total electric field of HE modeB (n = 0:5322� 5:4249j).

polarized, but the TM modes lie on the EH and the outer HE
branch, while the TE modes are located on the two HE branches
closest to the real -axis.

III. SCATTERING AT AN ABRUPT INTERFACE

To calculate the scattering at an abrupt interface, we use the
well-known mode-matching technique [13]. This method starts
out by imposing the continuity of the tangential-field com-
ponents at the interface. Applying the orthogonality relations
transforms the expressions into a set of linear equations, from
which the scattering matrices can be calculated. Prominent in
these expressions are overlap integrals over the cross section
between the field profiles of modefrom one waveguide and
mode from the other waveguide [14]

(7)

These integrals can be calculated analytically, again by taking
the same expressions valid in the case without PML and by al-
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Fig. 5. Scattering of the fundamental mode from Fig. 2 at an interface with a
uniform GaAs layer (n = 3:5).

Fig. 6. Reflectivity of the fundamental mode of the incidence waveguide for
the structure from Fig. 5.

lowing the radius of the metal cylinder to assume a complex
value.

In order to model open space with this method, we have to
pay attention to the reflections that occur at the metal cylinder.
To illustrate the effectiveness of PML in reducing these para-
sitic reflections, we calculate the reflectivity onto itself of the
fundamental mode of the waveguide from Fig. 2, at an interface
with a uniform GaAs medium with refractive index 3.5 (Fig. 5).
Fig. 6 shows the evolution of this reflectivity as a function of
the real part of radius of the metal cylinder, both without a PML
( ) and with a PML .

Both curves converge to the same value, which is the reflec-
tivity of the open problem, i.e., without the metal wall. In the
presence of a PML, however, the reflection oscillations are sig-
nificantly damped. This means that in order to achieve a given
accuracy, we can use a significantly smaller metal cylinder in the
PML case. This reduced computational volume requires fewer
modes in order to achieve convergence. This can yield a large
speedup in computation time, which scales roughly with the
third power of the number of modes. The number of modes used
in Fig. 6 is 115 times .

IV. EFFICIENT LOCATION OF COMPLEX ROOTS

An important implementation question is how to efficiently
locate the propagation constants in the complex plane. Should
this step prove too time consuming, it could eliminate the
speedup due to the smaller number of modes required.

A general technique for root finding in the complex plane
is the so-called argument principal method (APM) [15]. This
method uses contour integration to locate the zeros of an ana-
lytic function. Although this method works, it can be time con-
suming if a large number zeros is to be found.

Therefore, we opt for a different root-finding strategy. We
start out from the lossless structure (i.e., without a PML) and
calculate its guided and discretized radiation modes. These lie

Fig. 7. Path traced out by the propagation constants of the radiation modes
from Fig. 2, asR changes from 0.0 to�0.1. Every cross corresponds to a
change inR of 0.001.

on the coordinate axes and can be calculated with relatively
little numerical effort. In rare cases, a lossless structure can also
support complex modes, which are not located on the coordi-
nate axes [13]. These can be located by the APM, and since the
number of complex modes is much smaller than the number of
guided and radiation modes, this application of the APM has
little numerical penalty.

Starting from this set of guided, radiation, and complex
modes, we now gradually increase the losses in the structure
(e.g., in ) and track the modes as they move from the
coordinate axes into the complex plane. This technique poses
no numerical problems since two modes rarely become de-
generate during the tracking process. The path traced out by
some of these radiation modes is shown in Fig. 7, again for the
waveguide structure from Fig. 2 with

This approach is significantly faster than the application of
the APM to directly find all the modes in the lossy case.

The entire calculation of the scattering matrices, including
root finding, takes under 3 s for 50 modes using a 250-MHz
Ultrasparc processor.

V. CHOICE OFPML PARAMETERS

When modeling open space by using a metal cylinder coated
with a PML, one has two degrees of freedom: the real and imag-
inary parts of the cylinder radius.

Increasing the (absolute value of the) imaginary part de-
creases the amplitude of the oscillations due to parasitic reflec-
tions. It also entails a small increase in computation time to lo-
cate these modes because they trace a longer path in the complex
plane. For the simulations on the structure from Fig. 6,0.1 was
found to be a good compromise.

Increasing the real part also increases the accuracy,
but to a much smaller extent as compared to changing.
Moreover, the numerical effort associated with increasing
is much larger because of the larger computational volume
and the higher number of modes required. On the other hand,
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Fig. 8. Path traced out by the propagation constants of the guided modes from
Fig. 2, asR changes from 0.0 to�0.2, but now withR = 0:55 �m.

Fig. 9. Path traced out by the propagation constants of the radiation modes
from Fig. 2, asR changes from 0.0 to�0.1, but now withR = 0:55 �m.
(dashed lines indicate outer HE branches).

should not be chosen too small either since the metal will
then interact with the evanescent tails of the guided modes and
strongly disturb the results. This is true even in the presence of
a PML because the imaginary part of the radius is only effective
in damping waves that are propagative in the direction normal
to the PML, as is the case for radiation modes of the structure.

Fig. 8 illustrates the effect of a PML on the guided modes of
the structure from Fig. 2, but now with m. The path
traced by a guided mode when changing from 0.0 to 0.2
can take it through the lossy and/or gain quadrant. At first sight,
it may seem surprising that some modes will experience gain in
the presence of a PML, but this can be understood by looking at
the anisotropic formulation of a PML [10]: the material tensor is
that of a material with gain in some directions and loss in others.

This particular balance between loss and gain is precisely what
achieves reflectionless absorption for propagative waves. For
waves that are evanescent normal to the PML, this balance can
either yield lossy or amplified modes. Also note that the effect is
more pronounced for higher order guided modes, which are not
so well confined to the core and are, therefore, more influenced
by the PML.

A second reason why should not be chosen too small is
illustrated in Fig. 9, which shows the path trace of the radia-
tion modes for the structure of Fig. 2, with m
and . The two outer HE branches (indicated by the
dashed lines) are now only sparsely populated. This has implica-
tions when considering the convergence of the results as a func-
tion of the number of modes retained in the expansion. Since the
number of modes on each branch should be taken sufficiently
high, a large total number of modes is required in order to arrive
at a large enough number of modes on the outer branches.

To summarize, should be chosen large enough so that the
evanescent tails of the guided modes are sufficiently damped
before reaching the metal. This also implies that the method is
less practical for modes very near to cutoff.

VI. CONCLUSION

In this paper, we have demonstrated an eigenmode expan-
sion technique in cylindrical structures, where we used a PML
to clad the discretization volume. The reflectionless absorption
provided by the PML allows an efficient simulation of open
space, while still maintaining the advantage of a discrete set of
modes.
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