NONLINEAR OPTICS IN A-SI-ON-INSULATOR AND INGAP-ON-INSULATOR WAVEGUIDE CIRCUITS

1

NONLINEAR OPTICS IN <SOMETHING...> AND <SOMETHING...>

NONLINEAR OPTICS IN <MATERIAL PLATFORM 1> AND <MATERIAL PLATFORM 2> <SOMETHING...>

NONLINEAR OPTICS IN <MATERIAL PLATFORM 1> AND <MATERIAL PLATFORM 2> <DEVICE/SYSTEMS>

NONLINEAR OPTICS IN <MATERIAL PLATFORM 1> AND <MATERIAL PLATFORM 2> <DEVICE/SYSTEMS>

NONLINEAR OPTICS IN A-SI-ON-INSULATOR AND <MATERIAL PLATFORM 2> <DEVICE/SYSTEMS>

NONLINEAR OPTICS IN A-SI-ON-INSULATOR AND INGAP-ON-INSULATOR <DEVICE/SYSTEMS>

NONLINEAR OPTICS IN A-SI-ON-INSULATOR AND INGAP-ON-INSULATOR WAVEGUIDE CIRCUITS

ACKNOWLEDGEMENTS AND THANKS TO:

- Photonics Research Group (INTEC, Ugent) and the ERC grants MIRACLE and InSpectra grants for financial support
- <u>LPN</u>, Paris for collaboration in processing of the InGaP waveguide circuits
- <u>ULB</u>, Brussels for collaboration in nonlinear experiments in InGaP waveguide circuits
- <u>Thales</u>, Paris, for providing the III-V material as well as providing feedback for nonlinear experimental results

nec

OUTLINE

- 1. Nonlinear optics
- 2. ... in a-Si:H-on-insulator platform
- 3. ... in InGaP-on-insulator platform
- 4. Future perspectives

OUTLINE

- 1. Nonlinear optics
 - 1.1 What is it?
 - 1.2 Historical developments
 - 1.3 SOI platform
- 2. ... in a-Si:H-on-insulator platform
- 3. ... in InGaP-on-insulator platform
- 4. Future perspectives

THE *LINEAR* RESPONSE TO LIGHT

Atom-light interaction

THE *NONLINEAR* RESPONSE TO LIGHT

Nonlinear response of dielectric materials

1ec

15

DIFFERENT NONLINEAR PROCESSES

THE EFFICIENCY OF NONLINEAR PROCESSES

- **1.** The strength of the nonlinear response
- 2. Light intensity
- **3.** Interaction volume
- 4. Phasematching

OUTLINE

- 1. Nonlinear optics
 - 1.1 What is it?
 - 1.2 Historical developments
 - 1.3 SOI platform
- 2. ... in a-Si:H-on-insulator platform
- 3. ... in InGaP-on-insulator platform
- 4. Future perspectives

1 2 HISTORICAL DEVELOPMENTS

<u>1917</u>: Einstein's theory on stimulated emission

GOOGLE NGRAM VIEWER

Google Books Ngram Viewer

OUTLINE

- 1. Nonlinear optics
 - 1.1 What is it?
 - 1.2 Historical developments
 - 1.3 SOI platform
- 2. ... in a-Si:H-on-insulator platform
- 3. ... in InGaP-on-insulator platform
- 4. Future perspectives

13SOI PLATFORM

NONLINEARITY OF THE SOI PLATFORM

Silicon-on-insulator (SOI)

- $\chi^{(3)}$ (x 100 silica)
- Effective area (/ 1000) •

$$\gamma_{SOI} = \gamma_{fber} \times 100000 !$$

Si core

Oxide cladding

200nm

NONLINEAR PROCESSES IN SOI PLATFORM

Going to the mid-infrared

GHENT

UNIVERSITY

umec

DEFICIENCIES OF SOI AS A NONLINEAR PLATFORM

(a) Nonlinear losses > nonlinear gain

Solutions?

(1) Work beyond TPA wavelength, sweep out carriers, ultrashort pulses...

(1) Strain/surface $\chi^{(2)} = 0$

OUTLINE

- 1. Nonlinear optics
- 2. ... in a-Si:H-on-insulator platform
- 3. ... in InGaP-on-insulator platform
- 4. Future perspectives

2 NLO IN A-SI-ON-INSULATOR PLATFORM

1. Nonlinear optics

2. ... in a-Si:H-on-insulator platform

- 2.1 Why amorphous silicon?
- 2.2 Nonlinear loss measurement

2.3 Supercontinuum generation (ps-regime)

- 3. ... in InGaP-on-insulator platform
- 4. Future perspectives

21 WHY AMORPHOUS SILICON?

WHY AMORPHOUS SILICON?

(a) Nonlinear losses > nonlinear gain

Solutions?

(1) Work beyond TPA wavelength, sweep out carriers, ultrashort pulses...

(2) Other materials: large bandgap materials

1. Nonlinear optics

2. ... in a-Si:H-on-insulator platform

- 2.1 Why amorphous silicon?
- 2.2 Nonlinear loss measurement

2.3 Supercontinuum generation (ps-regime)

- 3. ... in InGaP-on-insulator platform
- 4. Future perspectives

222 NONLINEAR LOSS MEASUREMENT

NONLINEAR LOSS - TRANSMISSION MEASUREMENT

 $\alpha_{a-Si} = 0.045 \text{ cm/GW} [1950 \text{ nm}]$ $\alpha_{c-Si} = 0.500 \text{ cm/GW} [1550 \text{ nm}]$

1. Nonlinear optics

2. ... in a-Si:H-on-insulator platform

- 2.1 Why amorphous silicon?
- 2.2 Nonlinear loss measurement

2.3 Supercontinuum generation (ps-regime)

- 3. ... in InGaP-on-insulator platform
- 4. Future perspectives

23 SUPERCONTINUUM GENERATION (PS-REGIME)

SUPERCONTINUUM GENERATION

Mechanism for supercontimuum generation:

Modulation instability sidebands

Four coupled wave equations:

$$\begin{aligned} \frac{dA_1}{dz} =& iRe(\gamma) \left[\left(|A_1|^2 + 2|A_2|^2 + 2|A_3|^2 + 2|A_4|^2 \right) A_1 + 2A_2^* A_3 A_4 e^{i\Delta k_{lin}z} \right] \\ \frac{dA_2}{dz} =& iRe(\gamma) \left[\left(|A_2|^2 + 2|A_3|^2 + 2|A_4|^2 + 2|A_1|^2 \right) A_2 + 2A_1^* A_3 A_4 e^{i\Delta k_{lin}z} \right] \\ \frac{dA_3}{dz} =& iRe(\gamma) \left[\left(|A_3|^2 + 2|A_4|^2 + 2|A_1|^2 + 2|A_2|^2 \right) A_3 + 2A_1 A_2 A_4^* e^{-i\Delta k_{lin}z} \right] \\ \frac{dA_4}{dz} =& iRe(\gamma) \left[\left(|A_4|^2 + 2|A_1|^2 + 2|A_2|^2 + 2|A_3|^2 \right) A_4 + 2A_1 A_2 A_3^* e^{-i\Delta k_{lin}z} \right] \end{aligned}$$

WHERE IS THE GAIN AVAILABLE?

SUPERCONTINUUM GENERATION (PS-REGIME)

- 1. Nonlinear optics
- 2. ... in a-Si:H-on-insulator platform
- 3. ... in InGaP-on-insulator platform
- 4. Future perspectives

NLO IN INGAP-ON-INSULATOR PLATFORM

- 1. Nonlinear optics
- 2. ... in a-Si:H-on-insulator platform
- 3. ... in InGaP-on-insulator platform
 - 3.1 Why InGaP?
 - 3.2 Fabrication overview
 - 3.3 Nonlinear loss (3PA)
 - 3.4 Four-wave mixing
 - 3.5 Supercontinuum generation
 - 3.6 Second order nonlinearity
- 4. Future perspectives

DEFICIENCIES OF SOI AS A NONLINEAR PLATFORM

(a) Nonlinear losses > nonlinear gain

Solutions?

(1) Work beyond TPA wavelength, sweep out carriers, ultrashort pulses...

(1) Strain/surface $\chi^{(2)} = 0$

- 1. Nonlinear optics
- 2. ... in a-Si:H-on-insulator platform
- 3. ... in InGaP-on-insulator platform
 - 3.1 Why InGaP?
 - 3.2 Fabrication overview
 - 3.3 Nonlinear loss (3PA)
 - 3.4 Four-wave mixing
 - 3.5 Supercontinuum generation
 - 3.6 Second order nonlinearity
- 4. Future perspectives

32 FABRICATION OVERVIEW

MATERIALS FOR ON-CHIP NLO

	Index contrast	Losses	Transparency range	Bandgap	χ ⁽³⁾ nonlinearity	χ ⁽²⁾ nonlinearity
SiO ₂ fiber Metric	V. Low	V. Low (0.1 dB/km)	Vis-2.5 um	Large	Weak	No (bulk)
Si ₃ N ₄ -on- Material oxide	Low	Moderate < 1dB/cm	Vis-7(4)um	Large	Moderate	No (bulk)
Si-on- insulator	Large	Moderate ~ 1 dB/cm	1.1 to 8(4) um	1.1 eV	Strong	No (bulk)
Amorphous silicon	Large	Moderate ~ 1 dB/cm	1.1 to 8(4) um	> 1.1 eV	Strong	No (bulk)
III-V-on- insulator	Large	Moderate- high (1-10 dB/cm)	~Vis-MIR	1.7 eV	Strong(er)	Yes, strong

FABRICATION FLOW OVERVIEW

- Substrate preparation (SOI/SiN/"plain")
- Bonding
- Substrate removal
- E-beam Patterning
- Etching

FABRICATION FLOW

INTEGRATION TO SOI/SIN

Ī

GHENT

UNIVERSITY

Some fabricated structures

- 1. Nonlinear optics
- 2. ... in a-Si:H-on-insulator platform
- 3. ... in InGaP-on-insulator platform
 - 3.1 Why InGaP?
 - 3.2 Fabrication overview
 - 3.3 Nonlinear loss (3PA)
 - 3.4 Four-wave mixing
 - 3.5 Supercontinuum generation
 - 3.6 Second order nonlinearity
- 4. Future perspectives

3.3 NONLINEAR LOSS (3PA)

3-PHOTON ABSORPTION

- 1. Nonlinear optics
- 2. ... in a-Si:H-on-insulator platform
- 3. ... in InGaP-on-insulator platform
 - 3.1 Why InGaP?
 - 3.2 Fabrication overview
 - 3.3 Nonlinear loss (3PA)
 - 3.4 Four-wave mixing
 - 3.5 Supercontinuum generation
 - 3.6 Second order nonlinearity
- 4. Future perspectives

3.4 FOUR-WAVE MIXING

FOUR-WAVE MIXING

Material platform	γ (/W/m)
SOI	400 (but, saturation due to TPA/FCA)
SiN	7
AlGaAs-on-AlGaAs	82
InGaP-on-insulator	475

FWM IN INGAP-ON-SOI MICRODISKS

GHENT

UNIVERSITY

- 1. Nonlinear optics
- 2. ... in a-Si:H-on-insulator platform
- 3. ... in InGaP-on-insulator platform
 - 3.1 Why InGaP?
 - 3.2 Fabrication overview
 - 3.3 Nonlinear loss (3PA)
 - 3.4 Four-wave mixing
 - 3.5 Supercontinuum generation (fs-regime)
 - 3.6 Second order nonlinearity
- 4. Future perspectives

35 SUPERCONTINUUM GENERATION (FS-REGIME)

COHERENT SUPERCONTINUUM GENERATION

Ideal Soliton case: only β_2 , no HOD, 3PA etc.

REALITY VS IDEAL

SUPERCONTINUUM GENERATION MECHANISM

Supercontinuum generation in the

1. Self phase modulation

 $n(t) = n_0 + n_2 I(t)$

Soliton fission 2.

3.

າງອດ

$$N = \sqrt{\frac{\tau^2 \gamma P}{|\beta_2|}} \qquad \gamma = \frac{k_0 n_2}{A_{eff}}$$

SUPERCONTINUUM GENERATION: THEORY

Dispersive wave (DW) generation: waveguide design with dispersion engineering

SUPERCONTINUUM GENERATION: EXPERIMENT

COMPARISON TO SIMULATIONS

SUPERCONTINUUM GENERATION: COHERENCE

UNIVERSITY

COHERENCE PROPERTIES

GHENT UNIVERSITY

umec

	SOI	InGaP
Bandwidth (octaves)	0.56	1.1
Pulse energy (pJ)	50	1
Coherence	Yes* (P _{peak} capping by TPA)	Yes (by limiting soliton no.)
Self-referencing $[\chi^{(2)}]$	No*	Yes*

- 1. Nonlinear optics
- 2. ... in a-Si:H-on-insulator platform
- 3. ... in InGaP-on-insulator platform
 - 3.1 Why InGaP?
 - 3.2 Fabrication overview
 - 3.3 Nonlinear loss (3PA)
 - 3.4 Four-wave mixing
 - 3.5 Supercontinuum generation (fs-regime)
 - 3.6 Second order nonlinearity
- 4. Future perspectives

3.6 SECOND ORDER NONLINEARITY

SECOND-ORDER NONLINEARITY

GHENT

UNIVERSITY

SHG IN RESONATORS

72
SHG IN RESONATORS

OUTLINE

- 1. Nonlinear optics
- 2. ... in a-Si:H-on-insulator platform
- 3. ... in InGaP-on-insulator platform
- 4. Future perspectives

4 FUTURE PERSPECTIVES

WHAT NEXT?

- Moving beyond the proof-of-principle experiments in the InGaP-OI platform, improve performance (losses)
- Integration with on-chip lasers, comb generation, *f*-to-2*f*, *etc*.
- Second-order applications such as DFG
- Exploit full potential of all the nonlinearities
- Extend platform to other similar materials

- Nonlinear optical platforms for overcoming deficiencies of SOI were investigated
- Hydrogenated amorphous silicon was shown to be useful in the mid-IR range
- InGaP-on-insulator platform was built
 - Fabrication process developed
 - Linear and nonlinear characterizations performed
 - Applications like SCG, SHG and integration were shown

THANK YOU ALL!

PHOTONICS RESEARCH GROUP

IN FACULTY OF ENGINEERING

