

Nanophotonic Waveguides and Photonic Crystals in Silicon-on-Insulator

Wim Bogaerts

19 April 2004

http://photonics.intec.UGent.be PhotonicsResearchGroup

guiding of light waves nano = small on a scale of 1nm = 1 billionth of a meter photon = elementary particle of light WWW

along a given path

Nanophotonic Waveguides and Photonic Crystals in Silicon-on-Insulator

A material consisting of a thin layer of Silicon on top of a layer of glass (isolator)

Silicon

Photonics **Insulator (glass)**

http://photonics.intec.UGent.be Group **Substrate (Silicion)**

Overview of this presentation

Background

- z **What's the use?**
- **How does a waveguide work?**
- **What's a photonic crystal?**
- **Foreground**
	- **Nanophotonic waveguides**
	- **What are the difficulties?**
	- **Can we make it?**
	- z **What comes out?**

Overview of this presentation

Background

- z **What's the use?**
- z **How does a waveguide work?**

• Nanophotonic waveguides

Answer: Telecommunication

- \bullet **Can we make it?**
- z **What comes out?**

 \bullet

INTEC

Telecommunication

Bring information from A to B

Long ago: on foot, by horse, ship, ...

- z **Slow**
- \bullet **Much capacity**

- z **Fast**
- **Insufficient capacity for today's needs**

Now: Optical fibers (using light)

- z **Fast**
- \bullet **Large capacity**
- © intec 2004 \bullet **Long distance**

TITTI Telecommunication networks UNIVERSITEIT

© intec 2004

Cubicle on the

curbsidesubmarine cable ĒП 可 **INTEC**

Telecommunication networksTITUTI UNIVERSITEIT

Telecommunication networksTITUTI UNIVERSITEIT

Telecommunication networks

Fibre to the curbside

Telecommunication networks

Fibre to the home

UNIVERSITEIT

Components between optical fibres

must

- \bullet **Amplify light signals**
- \bullet **Distribute light signals**
- \bullet **Restore light signals**

Must be smaller and cheaper

Now: large cupboard

Integrated Circuits

= bringing various functions together on a 'chip'

• Elektronics:

- Г **transistors**
- Г **metal wires for electrical connections between components**

• Fotonics:

- Г **switching functions**
- Г **waveguides to transport light between components**

PhotonicIntegrated Circuit

Nortel

OPtera DT 2002

Waveguides on a 'chip' Problem: taday's waveguides are too weak

 \bullet **large bends (otherwise 'light misses the bend')**

- **Few functions on a chip**
- z **Large chip area**

Expensive components

 \bullet

Integration of multiple functions

UNIVERSITEIT

TU Delft

1999

Overview of this presentation

Background

- z **What's the use?**
- **How does a waveguide work?**

<u>What's a photonic crystal?</u> **Foreground** z **Nanophotonic waveguides** z**What are the difficulties? What is light? How can we guide light? What is a good waveguide?**

- **Can we make it?**
- z **What comes out?**

Light = Electromagnetic Radiation

Ray of light [≈] **Electromagnetic wave**

z **Propagates at speed of light c**

E

H ^c

wavelength λ

- **Electrical oscillation E**
- **Magnetic oscillation H**
- **Oscillation frequency f**

H

• with a wavelength λ

 $f \times \lambda = c$

In vacuum: light propagates at the speed of light c

In material: light propagates n time slower

refractive index n

wavelength becomes n times shorter for the same frequency

Light at an interface

- **Light rays change direction**
- **Light is partially reflected**

Effect is more pronounced with a stronger contrast in refractive index

Total internal reflection

Van 'inside to outside':Very oblique rays are totally reflected

= Total internal reflection

The critical angle with the surface is larger for a stronger contrast in refractive index(less oblique rays are also reflected)

low refractive index

high refractive index

Layered (Slab) Waveguide

'Sandwich' of material with a high refractive index between material with a low refractive index

Light is guided by total internal reflectionin a core of high refractive index surrounded by a cladding of low refractive index

low refractive index

Bends in waveguides UNIVERSITEI

Some rays can escape from the waveguide

- **Better confinement if the contrast in refractive index is adequately large**
- z **Less loss if the bends are made sufficiently wide**

Sharp bends possible with large refractive index contrast

Mode of a waveguide UNIVERSITEI

Thin core: Rays are an inaccurate model Light is located in a smeared-out 'blob' in and around the waveguide core

- **= a mode**
	- **a mode propagates as a single entity**
	- **Guided modes: remain localised around the core**

low refractive index

low refractive index

Refractive index contrast in more directions: confine light in a core

Guided modes in a waveguide

Some waveguides can support multiple guided modes

Mode 0 (ground mode) is the most useful

- **best confinement: Smallest cross section**
- \bullet **most elegant distribution (no zeroes)**

We'd like a waveguide that only supports a ground mode (= single-mode waveguide)

© intec 2004

UNIVERSITEIT

For telecommunication: Waveguides should guide only a single mode: Core must be sufficiently large

z **Optical fibres (low refractive index contrast): Core diameter ~ 10µm**

> **Larger refractive index contrast smaller core**

z **Waveguides in Silicon-on-Insulator (high index contrast): Core ~ 0.2 x 0.5µm.**

Reduce bend radius:

increase refractive index contrastFrom 1.46-to-1.44 to 3.45-to-1

1999

Silica-on-SiliconContrast: 1.46 to 1.44Bend radius = 2cm

Silicon-on-Insulator Contrast: 3.45 to 1Bend radius = 5µm

2003: 'Photonic wire'

© intec 2004

Overview of this presentation

Background

- z **What's the use?**
- z **How does a waveguide work?**
- **What's a photonic crystal?**

Fored • Nanophotonic waveguides What are the unnounces: What is it? What can we use it for?

- **Can we make it?**
- z **What comes out?**

 \bullet

 \bullet

A periodically layered structure $\overline{\mathsf{H}\mathsf{H}\mathsf{H}}$ UNIVERSITEIT

 $\overline{\mathbf{11}}$

Periodicity in more directions

TITULI

Periodicity in more directions

Periodic structures for light

= photonic crystals

1-D

///

UNIVERSITEIT

High refractive index contrast (larger than 2-to-1) needed for Full photonic band gap

© intec 2004

3-D

2-D

Pillars in air

 \bullet **Only a photonic bandgap for light with the electric field parallel to the pillar axis(= TM-polarisation)**

holes in material

• Only a photonic bandgap for light with the electric field perpendicular to the pillar axis (= TE-polarisation)

Perfect crystal with holes

 \bullet **No light can exist there with a wavelength in the photonic band gap**

Defect: change holes locally

- **Around the defect light can exist with wavelengths in the PBG**
- \bullet **The light cannot propagate away because of the photonic crystal**

 O O O

- **e.g. in a line defect light has to follow the** \bullet **defect** $\left(\right)$
	- p. **= a waveguide**
	- p. **light cannot 'miss the bend'**

A waveguide in a 2-D crystal

Infinitely extended 2-D crystal

- \bullet **remove one row of holes = waveguide**
- **Light is confined by the crystal in the horizontal direction**
- **Light can spread out in the vertical direction**

How do we confine the light vertically

UNIVERSITEIT

2-D crystal + slab waveguide UNIVERSITEIT

Solution: a layered waveguide

- **Light is confined vertically by total internal reflection**
- \bullet **or more correct: a guided mode**

Photonic Crystal Slab Waveguide

UNIVERSITEIT

Silicon-on-Insulator

Why this material system?

- **Transparent at telecom wavelengths (1550nm en 1300nm)**
- **High refractive index contrast**
	- \mathbb{R}^2 **in-plane: 3.45 (Silicon) to 1.0 (air holes)** Г **out-of-plane: 3.45 (Silicon) to 1.45 (silica)**

Overview of this presentation

Background

- z **What's the use?**
- z **How does a waveguide work?**
- **What's a photonic crystal?**
- **Foreground**
	- \bullet **Nanophotonic waveguides**
	- \bullet **What are the difficulties?**
	- \bullet **Can we make it?**

Photonic wires or crystals?

Nanophotonic Waveguides

Photonic Crystals:

- **•** In-plane: **Guiding by the photonic band gap**
- Vertical: Total internal reflection Vertical: total internal reflection

Photonic Wires:

- **In-plane: Guiding by Total internal reflection**
-

Both cases:• **Details : a few 100 nm**• **Required precision: <10 nm NANOPHOTONIC waveguides**

UNIVERSITEIT GEN1

Early days of Nanophotonics

<u>HIII</u> UNIVERSITEIT

Losses though out-of-plane scattering

Photonic Crystal slab: Vertical confinement by layered waveguide

But: No vertical confinement in the holes

Losses though out-of-plane scattering UNIVERSIT

Hight vertical refractive index contrast:

- **No radiation losses in straight sections**
- **Possible losses in bends, splitters, ...**

Bends: not that simple

- **In s simple bend:**
	- \bullet **Out-of-plane scattering**
	- \bullet **Backreflection**

Solution: Optimise the bend geometry (heavy number crunching)

Nanophotonic Waveguides

Photonic crystals:

 \bullet **Many possibilities**

Use for compact

functional elements

- \bullet **Hard to design**
- \bullet **Losses**

Photonic Wires:

- \bullet **Simple**
- \bullet **Less loss (given good fabrication technology)**

Use for waveguides (connections between elements)

Good fabrication technology needed

UNIVERSITEIT GENT

The troubles of nanophotonics UNIVERSITEIT GENT **Nanophotonic components**

Hard to model

- \bullet **index contrast: 3.5 to 1**
- \bullet **fine details: 150nm - 1**µ**^m**

Hard to Make

- \bullet **high resolution**
- \bullet **precision: <10nm**

Hard to Match

 \bullet

 \bullet **how to get the light in and out**

Hard to measure

What goes on

inside the

structure?

Hard to Design

- \bullet **many parameters**
- \bullet **fabrication tolerances**

The troubles of nanophotonics UNIVERSITEIT **Nanophotonic components Hard to measure What goes on**

Hard to model

- \bullet **index contrast: 3.5 to 1**
- \bullet **fine details: 150nm - 1**µ**^m**

Hard to Make

- **high resolution**
- \bullet **precision: <10nm**

Hard to Match

 \bullet

 \bullet **how to get the light in and out**

inside the

structure?

 \bullet **many parameters**

Hard to Design

 \bullet **fabrication tolerances**

Overview of the presentation

Background

- z **What's the use?**
- z **How does a waveguide work?**
- **What's a photonic crystal?**

Formal Particular N
Albert de was wee**n** z *what are the difficulties* are the difficulties of the difficulties of the difficulties? z**CAN WE MAKE IT! Which techniques are there? What do we use?What are the difficulties?**

z **What comes out?**

You

bet!

Litho-graphy = Stone-writing

TITITI UNIVERSITEIT

Lithographic techniques

Goal: Imprint a pattern into the Silicon

 $\overline{}$

Optical Lithography IIIII UNIVERSITEIT

- \bullet **Size of smallest patternis determined by the wavelength of the projection light source**
- \bullet **Shorter wavelength** [→] **narrower lines, smaller holes**

- **Facilities of IMEC (Leuven)**
	- **Research Center for Microelectronics**
	- z **Use of advanced technologies for the fabrication of CMOS chips : Deep-UV lithography at 248nm and 193nm.**
	- z **Electronic Chips = Based on Silicon**

COMPATIBLE PROCESSES

We use: Silicon-on-Insulator

Layer Structure

- z **220nm Silicon**
- **1000nm Silica buffer**

Step 2: Apply Photoresist UNIVERSITEIT

Photoresist: applied by spinning

- **Shipley UV3**
- \bullet **650nm thick layer**

photosensitive resist

AR coating

• to avoid reflections at the air-photoresist interface

AR-coating

Step 5: Illumation

Deep UV Lithography

- z **Wavelegth = 248nm**
- \bullet NA = 0.63
- \bullet **Dose = 10-40 mJ/cm2**

UNIVERSITEIT

 \bullet **Reduction factor = 4X**

Step 6: Post-exposure bakeUNIVERSITEIT

Unexposed areas become solid Exposed areas are dissolved

Step 8: Resist hardening

The photoresist is exposed to a plasma which partially etched the photoresist

Step 9: Silicon etch

A plasma etched the Silicon where it is not protected by the layer of photoresist

The residue of the photoresist is removed

A fistful of photonic crystals

8" SOI wafer: Structures are repeated many times

http://photonics.integrate.uGent.be 72.000 percent.be 72.000 percent.be 72.000 percent.be 72.000 percent.be 72

Problem: Proximity effects

Problem:

Holes near edges differ from holes in the bulk (while they should be identical!)

hole in the bulk = 420nm

Hole on the edge = 380nm

Hole on the corner = 350nm

1um

Solution: Proximity corrections

The patterns on the mask are altered in such a way that they are imaged correctly in the photoresist.

Corrections should be known in advance

- **Calculate (difficult)**
- **Measure empirically**

Desired patroon Resulting Photoresist Corrected pattern

Overview of this presentation

Background

- z **What's the use?**
- z **How does a waveguide work?**

z **what's a photonic crystal?**
Photonic crystal? **Foreground** z **Nanophotonic waveguides How do we measure?How good are our waveguides?**

- \bullet **What are the difficulties?**
- **Can we make it?**
- z **What comes out?**

INTEC

Measuring waveguide losses

Measured optical power [Watt]

UNIVERSITEIT GFN

wavelength [nm]

Measure the transmission

- O **Measure transmission as a function of wavelength**
- O **Measure transmission for various waveguide lengths**
- O **Transmission drops for longer waveguides**

Measuring waveguide losses

wavelength [nm] Value 2012 11: Notice 1: November 2: November 2: November 2: November 2: November 2: November 2: No measured optical power [Watt]

TITTI UNIVERSITEIT

> measured optical power [Watt]

Waveguide losses

Express power in dB with respect to input power

- \bullet **-10dB = 10x drop in power**
- z **-20dB = 100x drop in power**

Waveguide losses in dB/mm:

- \bullet **Measured values are on a straight line**
- **Slope of the line: waveguide loss in dB/mm**

UNIVERSITEIT

© intec 2004

[©] intec 2004

http://photonics.intec.UGent.be 84

Photonic Crystal Waveguide

UNIVERSITEIT

Behaviour is strongly wavelength dependent

- \bullet **For some wavelength ranges there is a fully guided mode**
- \bullet **For some wavelength ranges the mode is not fully guided**
- \bullet **For some wavelength ranges there no guided mode at all**

Our best result:

Competition:

7.5 dB/mm

2.4 dB/mm

McNab et al., LEOS Topicals, Vancouver 2003

Losses in photonic wires

Photonic Wires

 $\overline{\mathsf{H}\mathsf{H}\mathsf{H}}$

Our best results:

The competition:

7.5 dB/mm

2.4 dB/mm

McNab et al., LEOS Topicals, Vancouver 2003

0.24 dB/mm

© intec 2004

McNab et al. Opt. expr. 11(22) p. 2927

http://photonics.intec.UGent.be 89

Wanted: Cheaper components for optical fibre communications

Compact waveguide circuits

- **Photonic wires: perfect for connections**
- **Photonic Crystals: more suitable for compact functional elements**

Fabrication process

- **e-beam lithography: fine details, but too slow**
- \bullet **Deep-UV lithography**
	- p. **high resolution**
	- p. **large throughput**
	- F **commercially proven in CMOS industry**

Study of losses

- \bullet **Out-of-plane scattering**
- **Scattering at roughness**

Fabrication with deep-UV lithography • Optimised the fabrication process • Characterisation and study of components Measurement results

z **Photonic Wire: 0.24dB/mm**

z **Photonic Crystal Waveguide: 7.5dB/mm**

- \bullet **the IST-PICCO project**
- \bullet **the IAP-PHOTON network**
- **The Flemish institute for the advancement of Scientific-Technological research in the Industry (IWT)**
- \bullet **Roel and the complete** *photonics***-group**
- \bullet **The people in IMEC-Leuven involved in the fabrication of my designs**

UNIVERSITEIT

THIL

Some meaningless statistics

- ± **400'000'000'000 holes etched**
	- z **= 0.4 Terahole**
	- z **= 3000 holes per second**
	- \bullet **= 10 holes on each millimeter around the equator**
	- z **= 12 years of e-beam writing**
- ± **30 km straight waveguides**
	- z **= 2'000'000'000 dB loss**

roughly equivalent to the combined propagation loss of all submarine cable combined \odot